1. Farrington, N. E. S. and S. Iezekiel, "Deisgn and simulation of membrane supported transmission lines for interconnects in a mm-wave multichip module," Progress In Electromagnetics Research B, Vol. 27, 165-186, 2011. Google Scholar
2. Farrington, N. E. S., Micromachined transmission line inter-connects for millimetre-wave multi-chip modules, Ph.D. thesis, School of Electrical and Electronic Engineering, The University of Leeds, 2005.
3. Dib, N. I., W. P. Harokopus, Jr., L. P. B. Katehi, C. C. Ling, and G. M. Rebeiz, "Study of a novel planar transmission line," IEEE Int. Microwave Theory Tech. Symposium Digest, 623-626. Google Scholar
4. Weller, T. M., G. M. Rebeiz, and L. P. Katehi, "Experimental results on microshield transmission line circuits," IEEE MTT-S Digest, 827-830, 1993.
doi:10.1109/MWSYM.1993.276747 Google Scholar
5. Dib, N. I. and P. B. Katehi, "Impedance calculation for the microshield line," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 10, 406-408, Oct. 1992.
doi:10.1109/75.160122 Google Scholar
6. Weller, T. M., L. P. Katehi, and G. M. Rebeiz, "High-performance microshield line components," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 3, 534-543, Mar. 1995.
doi:10.1109/22.372098 Google Scholar
7. Weller, T. M., L. P. Katehi, and G. M. Rebeiz, "A 250-GHz Microshield bandpas filter," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 5, May 1995.
doi:10.1109/75.374082 Google Scholar
8. Petrini, I., F. Giacomozzi, D. Neculoiu, D. Vasilache, C. Buiculescu, and A. Muller, "Micromachined hybrid integrated receiver modules for 38 GHz and 77 GHz, on silicon substrate, technology and manufacturing," Semiconductor Conference, 2002, CAS 2002 Proc., Vol. 1, 29-32, Oct. 2002. Google Scholar
9. Duwe, K., S. Hirsch, and J. Muller, "Micromachined low pass filters and coplanar waveguides for D-band frequencies based on HMDSN-membranes," MSMW 2001 Symposium Proc., 675-677, Jun. 2001. Google Scholar
10. Liu, W. Y., D. P. Steenson, and M. B. Steer, "Membrane-supported CPW with mounted active devices," IEEE Microwave and Wireless Component Letters, Vol. 11, No. 4, 167-169, Apr. 2001.
doi:10.1109/7260.916332 Google Scholar
11. Liu, W. Y., "Mass produced copper-on-polymer-membrane boards for micromachined millimeter-wave circuits," IEEE EDMO Proc., 205-210, Vienna, 2001.
12. Drayton, R. F. and L. P. B. Katehi, "Development of self-packaged high frequency circuits using micromachining techniques," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 9, 2073-2080, Sep. 1995.
doi:10.1109/22.414543 Google Scholar
13. Katehi, L. P. B. and G. M. Rebeiz, "Novel micromachined approaches to MMICs using low-parasitic, high-performance transmission media and environments," IEEE Int. Microwave Theory Tech. Symposium Digest, 1145-1148, 1996. Google Scholar
14. Robertson, S. V., L. P. B. Katehi, and G. M. Rebeiz, "Micromachined W-band filters," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 4, 598-606, Apr. 1996.
doi:10.1109/22.491027 Google Scholar
15. Rebeiz, G. M., L. P. B. Katehi, T. M. Weller, C. Y. Chi, and S. V. Robertson, "Micromachined membrane filters for microwave and millimetre-wave applications (Invited article)," Int. J. of Microwave and Millimeter-wave Computer Aided Engineering, Vol. 7, 149-166, Feb. 1997.
doi:10.1002/(SICI)1522-6301(199703)7:2<149::AID-MMCE1>3.0.CO;2-N Google Scholar
16. Robertson, S. V., A. R. Brown, L. P. B. Katehi, and G. M. Rebeiz, "A 10--60-GHz micromachined directional coupler," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 11, 1845-1849, Nov. 1998.
doi:10.1109/22.734498 Google Scholar
17. Henderson, R. M., T. M. Weller, and L. P. B. Katehi, "Three-dimensional W-band circuits using Si micromachining," IEEE Int. Microwave Theory Tech. Symposium Dig., Vol. 2, 13-19, 441--444, Jun. 1999. Google Scholar
18. Lee, K. Y., N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, "Micromachining applications of a high resolution ultrathick photoresist," J. Vacuum Science and Technology B., Vol. 13, No. 6, 3012-3016, Nov./Dec. 1995.
doi:10.1116/1.588297 Google Scholar
19. Lorenz, H., M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, "SU-8: A low-cost negative resist for MEMS," J. of Micromechanical Microengineering, Vol. 7, 121-124, 1997.
doi:10.1088/0960-1317/7/3/010 Google Scholar
20. Despont, M., H. Lorenz, N. Fahrni, J. Brugger, P. Renaud, and P. Vettiger, "High-aspect-ratio, ultrathick, negative-tone near-UV photoresist for MEMs applications," IEEE Proc. Int. Workshop on Micro-electro Mechanical Systems, 518-522, Jan. 1997. Google Scholar
21. Lorenz, H., M. Laudon, and P. Renaud, "Mechanical characterization of a new high-aspect_ratio near UV-photoresist," J. Micro-electronic Engineering, Vol. 41--42, 371-374, 1998. Google Scholar
22. Farrington, N. E. S. and S. Iezekiel, "Accurate layer thickness control and planarization for multi-layer SU-8 structures," SPIE J. Micro./Nanolith. MEMS MOEMS, Vol. 10, 013019, Mar. 29, 2011, doi:10.1117/1.3563599. Google Scholar
23. Henderson, R. M., K. J. Herrick, T. M. Weller, S. V. Robertson, R. T. Kihm, and L. P. B. Katehi, "Three-dimensional high-frequency distribution networks. II. Packaging and integration," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 10, 1643-1651, Oct. 2000.
doi:10.1109/22.873891 Google Scholar
24. Katehi, L. P. B., J. F. Harvey, and K. J. Herrick, "3-D integration of RF circuits using Si micromachining," IEEE Microwave Magazine, 30-39, Mar. 2001.
doi:10.1109/6668.918260 Google Scholar
25. Coutant, M. and K. Chang, "Broadband, electrically long vertical waveguide interconnect," Electronic Letters, Vol. 36, No. 25, 2076-2078, Dec. 2000.
doi:10.1049/el:20001422 Google Scholar
26. Davidovitz, M., R. A. Sainati, and S. J. Fraasch, "A non-contact interconnect through an electrically thick ground plate common to two microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 4, 753-759, Apr. 1995.
doi:10.1109/22.375221 Google Scholar
27. Jackson, R. W. and D. W. Matolak, "Surface-to-surface transition via electromagnetic coupling of coplanar waveguides," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 11, 1027-1031, Nov. 1987.
doi:10.1109/TMTT.1987.1133802 Google Scholar
28. Ho, C.-H., L. Fan, and K. Chang, "Slot-coupled double-sided microstrip interconnects and couplers," IEEE Int. Microwave Theory Tech. Symposium Digest, 1321-1324, Jun. 1993.
doi:10.1109/MWSYM.1993.277119 Google Scholar
29. VandenBerg, N. L. and L. P. B. Katehi, "Broadband vertical interconnects using slot-coupled shielded microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 1, 81-88, Jan. 1992.
doi:10.1109/22.108326 Google Scholar
30. Raskin, J.-P., G. Gauthier, L. P. B. Katehi, and G. M. Rebeiz, "W-band single-layer vertical transitions," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 1, 161-164, Jan. 2000.
doi:10.1109/22.817487 Google Scholar
31. Herrick, K. J., J.-G. Yook, and L. P. B. Katehi, "Microtechnology in the development of three-dimensional circuits," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 11, 1832-1844, Nov. 1998.
doi:10.1109/22.734496 Google Scholar
32. Ommodt, K., S. Sanzgiri, F. German, and T. Jones, "Vertical interconnects for phased array packaging," IEEE Antennas and Propagation Society Int. Symposium Dig., Vol. 2, 1334-1337, Jul. 1996. Google Scholar
33. Minotani, T., Y. Royter, H. Ishii, A. Hirata, K. Machida, A. Sasaki, and T. Nagatsuma, "Three-dimensional millimeter-wave photonic integrated circuits on Si," IEEE Int. Microwave Theory Tech. Symposium Dig., Vol. 1, 57-60, May 2001. Google Scholar
34. Goverdhanam, K., R. N. Simons, and L. P. B. Katehi, "Novel three-dimensional vertical interconnect technology for microwave and RF applications," IEEE Int. Microwave Theory Tech. IEEE Int. Microwave Theory Tech., Vol. 2, 641-644, Jun. 1999. Google Scholar
35. Becker, J. P. and L. P. B. Katehi, "Multilevel finite ground coplanar line transitions for high-density packaging using silicon micromachining," IEEE Int. Microwave Theory Tech. Symposium Dig., Vol. 1, 303-306, Jun. 2000. Google Scholar
36. Alléaume, P., C. Toussain, T. Huet, and M. Camiade, "Millimeter-wave SMT low cost plastic packages for automotive RADAR at 77 GHz and high data rate E-band radios," IEEE Int. Microwave Theory Tech. Symposium Dig., Vol. 1, 789-792, Jun. 2009. Google Scholar
37. Byun, W., B. Kim, K. Kim, K. Eun, M. S. Kulke, R. Kersten, O. Mollenbeck, G. Rittweger, and M. Daejeon, "Design of vertical transition for 40 GHz transceiver module using LTCC technology," Proc. European Microwave Integrated Circuit Conference, EuMIC 2007, 555-558, Munich, Germany, 2007.
38. Lau, J. H., "Flip chip technologies," McGraw Hill, 1996. Google Scholar
39. Lin, J.-K., J. Drye, W. Lytle, T. Scharr, R. Subrahmanya, and R. Sharma, "Conductive polymer bump interconnects," IEEE Proc. Electronic Components and Technology Conference, 1059-1068, May 1996. Google Scholar
40. Oh, K. W. and C. H. Ahn, "Flip-chip packaging with micromachined conductive polymer bumps," IEEE Proc. Adhesive Joining and Coating Technology in Electronic Manufacturing, 224-228, Sep. 1998. Google Scholar
41. Oh, K. W., C. H. Ahn, and K. P. Roenker, "Flip-chip packaging using micromachined conductive polymer bumps and alignment pedestals for MOEMS," IEEE J. on Selected Topics in Quantum Electronics, Vol. 5, No. 1, 119-126, Jan./Feb. 1999.
doi:10.1109/2944.748115 Google Scholar
42. Oh, K. W. and C. H. Ahn, "A new flip-chip bonding technique using micromachined conductive polymer bumps," IEEE Trans. Advanced Packaging, Vol. 22, No. 4, 586-591, Nov. 1999.
doi:10.1109/6040.803450 Google Scholar
43. Li, C., F. E. Sauser, R. Azizkhan, C. H. Ahn, and I. Papautsky, "Polymer flip-chip bonding of pressure sensors on flexible kapton film for neonatal catheters," IEEE Int. Conf. Proc., Micro Electro Mechanical Systems, MEMS, 749-752, 2004. Google Scholar
44. Pozar, D. M., Microwave Engineering, 2nd Ed., John Wiley and Sons Inc., 1998.
45. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, Artech House, 1980.