1. Smirnova, E. I., C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, "Simulation of photonic band gaps in metal rod lattices for microwave applications," J. Appl. Phys., Vol. 91, No. 3, 960-968, Feb. 2002.
doi:10.1063/1.1426247 Google Scholar
2. Sirigiri, J. R., K. E. Kreischer, J. Macuhzak, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, "Photonic band gap resonator gyrotron," Phys. Rev. Lett., Vol. 86, 5628-5631, 2001.
doi:10.1103/PhysRevLett.86.5628 Google Scholar
3. Gao, X., Z. Yang, Y. Xu, L. Qi, D. Li, Z. Shi, F. Lan, and Z. Liang, "Dispersion characteristic of a slow wave structure with metal photonic band gap cells," Nuclear Instruments and Methods in Physics Research A, Vol. 592, 292-296, May 2008.
doi:10.1016/j.nima.2008.04.059 Google Scholar
4. McCalmont, J. S., M. M. Sigalas, G. Tuttle, K. M. Ho, and C. M. Soukolis, "A layer-by-layer metallic photonic band-gap structure," Appl. Phys. Lett., Vol. 68, 2759-2761, 1996.
doi:10.1063/1.115589 Google Scholar
5. Kuzmiak, V., A. A. Maradudin, and F. Pincemin, "Photonic band structures of two-dimensional systems containing metallic components ," Phys. Rev. B, Vol. 50, 16835-16844, Dec. 1994.
doi:10.1103/PhysRevB.50.16835 Google Scholar
6. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett., Vol. 69, No. 19, 2772-2775, Nov. 1992.
doi:10.1103/PhysRevLett.69.2772 Google Scholar
7. Moreno, E., D. Erni, and C. Hafner, "Band structure computations of metallic photonic crystals with the multiple multipole method," Phys. Rev. B, Vol. 59, No. 3, 1874-1877, Jan. 1999.
doi:10.1103/PhysRevB.59.1874 Google Scholar
8. Guo, S., F.Wu, S. Albin, and R. S. Rogowski, "Photonic band gap analysis using finite difference frequency-domain method," Optics Express, Vol. 12, No. 8, 1741-1746, 2004.
doi:10.1364/OPEX.12.001741 Google Scholar
9. Hiett, B. P., J. M. Generowicz, S. J. Cox, M. Molinari, D. H. Beckett, and K. S. Thomas, "Application of finite element methods to photonic crystal modeling," IEE Proceedings Science, Measurement & Technology, Vol. 149, No. 5, 293-296, Sep. 2005. Google Scholar
10. Nicorovici, N. A., R. C. McPhedran, and L. C. Botten, "Photonic band gaps for arrays of perfectly conducting cylinders," Phys. Rev. E, Vol. 52, No. 1, 1135-1145, Jul. 1995.
doi:10.1103/PhysRevE.52.1135 Google Scholar
11. Qiu, M. and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusion ," J. Appl. Phys., Vol. 87, No. 12, 8268-8275, Jun. 2000.
doi:10.1063/1.373537 Google Scholar
12. Kuang, W., W. J. Kim, and J. D. O'Brien, "Finite-difference time domain method for nonorthogonal unit-cell two-dimensional photonic crystals," Journal of Lightwave Technology, Vol. 25, No. 9, 2612-2617, Sep. 2007.
doi:10.1109/JLT.2007.903827 Google Scholar
13. Arriaga, J., A. J. Ward, and J. B. Pendry, "Order-N photonic band structures for metals and other dispersive materials," Phys. Rev. B, Vol. 65-155120, Apr. 2002. Google Scholar
14. Umenyi, A. V., K. Miura, and O. Hanaizumi, "Modified finite-difference time-domain method for triangular lattice photonic crystals," Journal of Lightwave Technology, Vol. 27, No. 22, 4995-5001, Nov. 2009.
doi:10.1109/JLT.2009.2027449 Google Scholar
15. Elsherbeni, A. Z. and V. Demir, "The Finite Difference Time Domain Method for Electromagnetics with MATLAB Simulations," Scitech Publishing Inc., Raleigh, 2009. Google Scholar
16. Qiu, M. and S. He, "Guided modes in a two-dimensional metallic photonic crystal waveguide," Phys. Lett. A, Vol. 266, 425-429, Feb. 2000.
doi:10.1016/S0375-9601(00)00049-9 Google Scholar