1. Munk, B. A., Frequency Selective Surfaces --- Theory and Design, John Wiley and Sons, Inc., New York, 2000.
doi:10.1002/0471723770
2. Wu, T. K., Frequency Selective Surfaces and Grid Array, John Wiley and Sons, Inc., New York, 1995.
3. Liu, H. T., et al., "Absorbing properties of frequency selective surface absorbers with cross-shaped resistive patches," Material Design, Vol. 28, 2166-2171, 2007.
doi:10.1016/j.matdes.2006.06.011
4. Mias, C., C. Tsakonas, and C. Oswald, An investigation into the feasibility of designing frequency selective windows employing periodic structures, (Ref. AY3922), Tech. Rep., Final Report for the Radio-communications Agency, Nottingham Trent University, 2001.
5. Sakran, F. and Y. Neve-Oz, "Absorbing frequency-selective-surface for the mm-wave range," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2649-2655, 2008.
doi:10.1109/TAP.2008.924701
6. Arya, F., M. Matthew, H. Christian, and V. Rüdiger, "Efficient procedures for the optimization of frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1340-1349, 2008.
doi:10.1109/TAP.2008.922678
7. Munk, B. A., R. J. Luebbers, and R. D. Fulton, "Transmission through a two-layer array of loaded slots," IEEE Transactions on Antennas and Propagation, Vol. 22, 804-809, 1974.
doi:10.1109/TAP.1974.1140902
8. Ulrich, R., "Far-infrared properties of metallic mesh and its complementary structure," Infrared Physics, Vol. 7, 37-55, 1967.
doi:10.1016/0020-0891(67)90028-0
9. Durschlag, M. S. and T. A. DeTemple, "Far-IR optical properties of freestanding and dielectrically backed metal meshes," Applied Optics, Vol. 20, 1245-1253, Mar. 1981.
doi:10.1364/AO.20.001245
10. Chen, H. Y., X. Y. Hou, and L. J. Deng, A novel microwave absorbing structure using FSS metamaterial, PIERS Proceedings, 1195-1198, Moscow, Russia, Aug. 18--21, 2009.
11. Simms, S. and V. Fusco, "Tunable thin radar absorber using artificial magnetic ground plane with variable backplane," Electronics Letters, Vol. 42, No. 21, 1197-1198, 2006.
doi:10.1049/el:20061989
12. Kominami, M., H. Wakabayashi, S. Sawa, and H. Nakashima, "Scattering from a periodic array of arbitrary shaped elements on a semi infinite substrate," Electronics and Communications in Japan (Part I: Communications), Vol. 77, No. 1, 85-94, 1994.
doi:10.1002/ecja.4410770109
13. Bardi, I., R. Remski, D. Perry, and Z. Cendes, "Plane wave scattering from frequency-selective surfaces by the finite-element method," IEEE Transactions on Magnetics, Vol. 38, No. 2, 641-644, 2002.
doi:10.1109/20.996167
14. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electronic Letters, Vol. 18, No. 7, 294-296, 1982.
doi:10.1049/el:19820201
15. Lee, C. K. and R. J. Langley, "Equivalent-circuit models for frequency-selective surfaces at oblique angles of incidence," IEE Proceeding H, Vol. 132, No. 6, 395-399, 1985.
16. Dubrovka, R., J. Vazquez, C. Parini, and D. Moore, "Equivalent circuit method for analysis and synthesis of frequency selective surfaces," IEE Proceeding on Microwave Antennas Propagation, Vol. 153, No. 3, 213-220, 2006.
doi:10.1049/ip-map:20050198
17. Sung, G. H., K. W. Sowerby, and A. G. Williamson, "Equivalent circuit modelling of a frequency selective plasterboard wall," IEEE Antennas and Propagation Society International Symposium, Vol. 4A, 400-403, 2005.
18. Philippakis, M., C. Martel, D. Kemp, S. Appleton, and S. Massey, Application of FSS structures to selectively control the propagation of signals into and out of buildings annex 3: Enhancing propagation into buildings, Final Report, ERA Project 51-CC-12033, ERA Report, 2004.
19. Campos, A. L. P. D. S., "Analysis of frequency selective surfaces with metallic and dielectric losses at millimeter wave range," Int. J. Infrared Milli Waves, Vol. 29, 684-692, 2009.
20. Kumar, R., Study and characterization of Zn-Mn and Zn-Co ferrite using FSSs at microwave frequency, ME Dissertation in Electronics and Communication Engineering, Department of E. & C., IIT Roorkee, 1998.
21. Langley, R. J. and E. A. Parker, "Double-square frequency-selective surfaces and their equivalent circuit," Electronics Letters, Vol. 19, No. 17, 675-677, 1983.
doi:10.1049/el:19830460
22. Kiani, G. I., A. R. Weily, and K. P. Esselle, "Frequency selective surface absorber using resistive cross-dipoles," IEEE Antennas and Propagation Society International Symposium, 4199-4202, 2006.
doi:10.1109/APS.2006.1711555
23. Langley, R. J. and A. J. Drinkwater, "Improved empirical model for the jerusalem cross," Microwaves, Optics and Antennas, IEE Proceedings H, Vol. 129, No. 1, 1-6, 1982.
doi:10.1049/ip-h-1.1982.0001
24. Huiling, Z., G. B. Wan, and W. Wan, Absorbing properties of frequency selective surface absorbers on a lossy dielectric slab, PIERS Proceedings, 165-168, Beijing, China, Mar. 23--27, 2009.
25. Parida, R. C., D. Singh, and N. K. Agarwal, "Implementation of multilayer ferrite radar absorbing coating with genetic algorithm for radar cross-section reduction at X-band," Indian Journal of Radio & Space Physics, Vol. 36, No. 2, 145-152, 2007.
26. Meshram, M. R., N. K. Agrawal, B. Sinha, and P. S. Misra, "A study on the behaviour of M-type barium hexagonal ferrite based microwave absorbing paints," Bulletin of Materials Science, Vol. 25, No. 2, 169-173, 2002.
doi:10.1007/BF02706238
27. Park, K. Y., S. E. Lee, C. G. Kim, and J. H. Han, "Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures," Composites Science and Technology, Vol. 66, 576-584, 2006.
doi:10.1016/j.compscitech.2005.05.034
28. Kern, D. J. and D. H. Werner, "A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers," Microwave and Optical Technology Letters, Vol. 38, No. 1, 61-64, 2003.
doi:10.1002/mop.10971
29. Kern, D. J. and D. H. Werner, "A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers," Microwave and Optical Technology Letters, Vol. 38, No. 1, 61-64, 2003.
doi:10.1002/mop.10971
29. Folgueras, L. d. C., E. L. Nohara, R. Faez, and M. C. Rezende, "Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline," Materials Research, Vol. 10, No. 1, 95-99, 2007.
doi:10.1590/S1516-14392007000100020
30. Sugimoto, S., S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, and M. Homma, "M-type ferrite composite as a microwave absorber with wide bandwidth in GHz," IEEE Transactions on Magnetics, Vol. 35, No. 5, 3154-3156, 1999.
doi:10.1109/20.801112
31. Filippo, C., A. Claudio, M. Agostino, and E. Prati, "Waveguide dielectric permittivity measurement technique based on resonant FSS filters," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 5, 273-275, 2011.
doi:10.1109/LMWC.2011.2122303
32. Luo, X. F., P. T. Teo, A. Qing, and C. K. Lee, "Design of double-square-loop frequency-selective surfaces using differential evolution strategy coupled with equivalent-circuit model," Microwave and Optical Technology Letters, Vol. 44, No. 2, 159-162, 2005.
doi:10.1002/mop.20575