Vol. 40
Latest Volume
All Volumes
PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-04-22
Design of Microwave Devices Exploiting Fibonacci and Hybrid Periodic/Fibonacci One Dimensional Photonic Crystals
By
Progress In Electromagnetics Research B, Vol. 40, 221-240, 2012
Abstract
We report the transmission response of generalized Fibonacci photonic crystal Fl(m,n) in microwave domain for normal incidence, where l is the generation number, and m and n are parameters of the Fibonacci distribution. The transmission spectra are calculated through the transfer matrix method and studied by varying the Fibonacci parameters. The structure is exploited to design a microwave mirror with large photonic band gap and polychromatic stop band filters. Therefore, other structure configurations based on the generalized Fibonacci system are proposed. A juxtaposition of p multilayer systems built according to Fibonacci distribution [Fl(m,n)]p makes possible to have switches like property (off-on-off-on-off-on-…). Then, an hybrid structure which is obtained by sandwiching p stacks of generalized Fibonacci photonic crystal between two periodic photonic crystals is proposed to enlarge the photonic band gap in microwave domain.
Citation
Abir Mouldi Mounir Kanzari , "Design of Microwave Devices Exploiting Fibonacci and Hybrid Periodic/Fibonacci One Dimensional Photonic Crystals," Progress In Electromagnetics Research B, Vol. 40, 221-240, 2012.
doi:10.2528/PIERB12011607
http://www.jpier.org/PIERB/pier.php?paper=12011607
References

1. Li, Z. Y., "Principles of the plane-wave transfer-matrix method for photonic crystals ," Sci. and Tech. of Adv. Mat., Vol. 6, 837-841, 2005.
doi:10.1016/j.stam.2005.06.013

2. Mouldi, A. and M. Kanzari, "Broad multilayer antireflection coating by apodized and chirped photonic crystal," Opt. Com., Vol. 284, 4124-4128, 2011.
doi:10.1016/j.optcom.2011.05.005

3. Mouldi, A., M. Kanzari, and B. Rezig, "Broad antireflection grating by apodization of one dimensional photonic crystal," PIERS Proceedings, 1461-1464, Marrakesh, Morocco, Mar. 20-23, 2011.

4. Mouldi, A. and M. Kanzari, "Influence of the optical parameters on transmission properties of the chirped photonic crystal," ACES Journal, Vol. 26, No. 3, 259-266, 2011.

5. Mouldi, A. and M. Kanzari, "Design of an omnidirectional mirror using one dimensional photonic crystal with graded geometric layers thicknesses," Optik, Vol. 123, No. 2, 125-131, 2012.
doi:10.1016/j.ijleo.2011.03.010

6. Yeh, P., Optical Waves in Layered Media, Wiley, New York, 1988.

7. Kittel, C., Introduction to Solid State Physics, Wiley, New York, 1976.

8. Kumar, V., K. S. Singh, and S. P. Ojha, "Enhanced omni-directional reflection frequency range in Si-based one dimensional photonic crystal with defect," Optik, Vol. 122, 910-913, 2011.
doi:10.1016/j.ijleo.2010.06.016

9. Li, H., H. Chen, and X. Qiu, "Band-gap extension of disordered 1D binary photonic crystals," Physica B, Vol. 279, 164-167, 2000.
doi:10.1016/S0921-4526(99)00716-4

10. Zi, J., J. Wan, and C. Zhang, "Large frequency range of negligible transmission in one-dimensional photonic quantum well structures ," Appl. Phys. Lett., Vol. 73, 2084-2086, 1998.
doi:10.1063/1.122385

11. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, "Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures," Appl. Phys. Lett., Vol. 80, 4291-4293, 2002.
doi:10.1063/1.1484547

12. Guida, G., "Numerical studies of disordered photonic crystals," Progress In Electromagnetics Research, Vol. 41, 107-131, 2003.
doi:10.2528/PIER02010805

13. Bertolotti, M., P. Masciulli, and C. Sibilia, "Spectral transmission properties of a auto-similar optical Fabry-Perot resonator," Optics Lett., Vol. 19, 777, 1994.
doi:10.1364/OL.19.000777

14. Bertolotti, M., P. Masciulli, and C. Sibilia, "Linear and nonlinear integrated optics," SPIE, Vol. 2212, 607, 1994.
doi:10.1117/12.185132

15. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimensional generalized multilayer fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.
doi:10.2528/PIER05091701

16. Ben Abdelaziz, K., J. Zaghdoudi, M. Kanzari, and B. Rezig, "A broad omnidirectional reflection band obtained from deformed Fibonacci quasi-periodic one dimensional photonic crystals," J. Opt. A: Pure Appl. Opt., Vol. 7, 544-549, 2005.
doi:10.1088/1464-4258/7/10/005

17. Golmohammadi, S., M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, "Spectral analysis of the fibonacci-class one-dimensional quasi-periodic structures," Progress In Electromagnetics Research, Vol. 75, 69-84, 2007.
doi:10.2528/PIER07051902

18. Macia, E., "Optical engineering with Fibonacci dielectric multilayers," Appl. Phys. Lett., Vol. 73, 3330-3332, 1998.
doi:10.1063/1.122759

19. Aynaoua, H., E. H. El Boudoutia, Y. El Hassouania, A. Akjoujb, B. Djafari-Rouhanib, J. Vasseurb, L. Dobrzynskib, and V. R. Velasco, "Propagation of electromagnetic waves in periodic and Fibonacci photonic loop structures," Physica A, Vol. 358, 68-85, 2005.
doi:10.1016/j.physa.2005.06.007

20. Grushina, N. V., P. V. Korolenko, A. Y. Mishin, and A. M. Zotov, "Broad omnidirectional band of reflection from fibonacci one-dimensional photonic crystals," PIERS Online, Vol. 5, No. 6, 511-515, 2009.

21. Monsoriu, J. A., R. A. Depine, and E. Silvestre, "Non Bragg band gaps in 1D metamaterial aperiodic multilayers," J. of Europ. Opt. Soc., Vol. 2, 07002, Rapid Publications, 2007.

22. Zarate, J. E. and V. R. Velasco, "Electronic properties of quasiperiodic heterostructures," Phys. Rev. B, Vol. 65, 045304-045312, 2001.
doi:10.1103/PhysRevB.65.045304

23. Zhang, C., F. Qiao, J. Wan, and J. Zi, "Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures," J. Appl. Phys., Vol. 87, 3174-3176, 2000.
doi:10.1063/1.372318

24. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

25. Manzanares-Martinez, J., R. Archuleta-Garcia, P. Castro-Garay, D. Moctezuma-Enriquez, and E. Urrutia-Banuelos, "One-dimensional photonic heterostructure with broadband omnidirectional reflection," Progress In Electromagnetics Research, Vol. 111, 105-117, 2011.
doi:10.2528/PIER10110404

26. Liang, G., P. Han, and H. Wang, "Narrow frequency and sharp angular defect mode in one-dimensional photonic crystals from a photonic heterostructure," Opt. Lett., Vol. 29, 192-194, 2004.
doi:10.1364/OL.29.000192

27. Alagappan, G. and P. Wu, "Investigations of laser oscillation and switching using a resonance at the band edge crossover in an hetero-structure of one-dimensional photonic crystals," Photon. Nanostruct.: Fundam. Appl., Vol. 7, 137-142, 2009.
doi:10.1016/j.photonics.2009.06.001

28. Qiang, H., L. Jiang, and X. Li, "Design of broad omnidirectional total reflectors based on one-dimensional dielectric and magnetic photonic crystal ," Opt. Las. Tech., Vol. 42, 105-109, 2010.
doi:10.1016/j.optlastec.2009.05.006

29. Garcia, J. E. and M. E. Mora-Ramos, "Study of optical propagation in hybrid periodic/quasiregular structures based on porous silicon," PIERS Online, Vol. 5, No. 2, 167-170, 2009.
doi:10.2529/PIERS080906010703

30. Klauzer-Kruszyna, A., W. Salejda, and M. H. Tyc, "Polarized light transmission through generalized Fibonacci multilayers: I. Dynamical maps approach," Optik, Vol. 115, No. 6, 257-276, 2004.
doi:10.1078/0030-4026-00360

31. Dulea, M., M. Severin, and R. Riklund, "Transmission of light through deterministic aperiodic non-Fibonaccian multilayers," Phys. Rev. B, Vol. 42, 3680, 1990.
doi:10.1103/PhysRevB.42.3680

32. Li, Z., "Principles of the plane-wave transfer-matrix method for photonic crystals," Sci. and Tech. of Adv. Mat., Vol. 6, 837-841, 2005.
doi:10.1016/j.stam.2005.06.013

33. Abelès, F., Annales Physique, Vol. 12, 596, Paris, 1950.

34. Zhang, J., Y. Cao, and J. Zheng, "Fibonacci quasi-periodic superstructure fiber Bragg gratings," Optik, Vol. 121, 417-421, 2010.
doi:10.1016/j.ijleo.2008.08.002

35. Chen, A. L., Y. S. Wanga, and C. Zhang, "Wave propagation in one-dimensional solid-fluid quasi-periodic and aperiodic phononic crystals," Physica B, Vol. 407, 324-329, 2012.
doi:10.1016/j.physb.2011.10.041

36. Suh, W. and S. Fan, "Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top ref lection characteristics ," Opt. Lett., Vol. 28, No. 19, 1763-1765, 2003.
doi:10.1364/OL.28.001763

37. Kanzari, M. and B. Rzig, "Optical polychromatic filter by combination of periodic and quasi periodic one dimensional dielectric photonic bandgap structures," J. Opt. A: Pure Appl. Opt., Vol. 3, 201-207, 2001.
doi:10.1088/1464-4258/3/6/372

38. Kanzari, M., A. Bouzidi, and B. Rezig, "Interferential polychromatic filters," Eur. Phys. J. B, Vol. 36, 431-443, 2003.
doi:10.1140/epjb/e2004-00001-9