Vol. 40
Latest Volume
All Volumes
PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-05-10
An Informative Differential Evolution Algorithm with Self Adaptive Re-Clustering Technique for the Optimization of Phased Antenna Array
By
Progress In Electromagnetics Research B, Vol. 40, 361-380, 2012
Abstract
In this paper we propose a new algorithm called An Informative Differential Evolution with Self Adaptive Reclustering Technique to find the amplitude-phase excitation of a linear phased array to have the desired far field pattern. Here we consider three problems for three different far field patterns and each problem is optimized with this algorithm. This algorithm has a proper balancing of exploration and exploitation power which is achieved with the help of information exchange among the subpopulations. We also used an elitist local search algorithm for the fine tuning at the suspected optimal position, and that helps us from the unnecessary wastage of Function Evaluations (FEs).
Citation
Dipankar Maity Udit Halder Swagatam Das , "An Informative Differential Evolution Algorithm with Self Adaptive Re-Clustering Technique for the Optimization of Phased Antenna Array," Progress In Electromagnetics Research B, Vol. 40, 361-380, 2012.
doi:10.2528/PIERB12020106
http://www.jpier.org/PIERB/pier.php?paper=12020106
References

1. Boeringer, D. W. and D. H. Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, 771-778, Mar. 2004.
doi:10.1109/TAP.2004.825102

2. Storn, R. and K. V. Price, "Differential evolution --- A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, Vol. 11, 341-359, 1997.
doi:10.1023/A:1008202821328

3. Das, S. and P. N. Suganthan, "Differential evolution: A survey of the state-of-the-art," IEEE Trans. on Evolutionary Computation, Vol. 15, No. 1, 4-31, Feb. 2011.
doi:10.1109/TEVC.2010.2059031

4. Mehrabian, A. R. and C. Lucas, "A novel numerical optimization algorithm inspired from weed colonization," Ecological Informatics, Vol. 1, 355-366, 2006.
doi:10.1016/j.ecoinf.2006.07.003

5. Mallahzadeh, A. R., S. Es'haghi, and A. Alipour, "Design of an E-shaped MIMO antenna using IWO algorithm for wireless application at 5.8 GHz," Progress In Electromagnetics Research, Vol. 90, 187-203, 2009.
doi:10.2528/PIER08122704

6. Mallahzadeh, A. R., S. Es'haghi, and H. R. Hassani, "Compact U-array MIMO antenna designs using IWO algorithm," International Journal of RF and Microwave Computer-aided Engineering, Wiley-InterSscience, Jul. 2009, DOI: 10.1002/mmce.20379.

7. Kennedy, J. and R. C. Eberhart, "Particle swarm optimization," Proceedings of IEEE International Conference on Neural Networks, 1942-1948, Piscataway, NJ, 1995.
doi:10.1109/ICNN.1995.488968

8. Holland, J., Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, 1975.

9. Jain, R. and G. S. Mani, "Dynamic thinning of antenna array using genetic algorithm," Progress In Electromagnetics Research B, Vol. 32, 1-20, 2011.
doi:10.2528/PIERB11042203

10. Grimaccia, F., M. Mussetta, and R. E. Zich, "Genetical swarm optimization: Self-adaptive hybrid evolutionary algorithm for electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 55, 781-785, 2007.
doi:10.1109/TAP.2007.891561

11. Guney, K. and S. Basbug, "Interference suppression of linear antenna arrays by amplitude-only control using a Bacterial Foraging algorithm," Progress In Electromagnetics Research, Vol. 79, 475-497, 2008.
doi:10.2528/PIER07110705

12. Mouhamadou, M., P. Armand, P. Vaudon, and M. Rammal, "Interference suppression of the linear antenna arrays controlled by phase with use of SQP algorithm," Progress In Electromagnetics Research, Vol. 59, 251-265, 2006.
doi:10.2528/PIER05100603

13. Mahanti, G. K., N. Pathak, and P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

14. Guney, K. and M. Onay, "Amplitude-only pattern nulling of linear antenna arrays with the use of BEES algorithm," Progress In Electromagnetics Research, Vol. 70, 21-36, 2007.
doi:10.2528/PIER07011204

15. MacQueen, J. B., "Some methods for classification and analysis of multivariate observations," Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 281-297, University of California Press, 1967, Retrieved April 7, 2009.

16. Liang, J. J., A. K. Qin, P. N. Suganthan, and S. Baskar, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE T. on Evolutionary Computation, Vol. 10, No. 3, 281-295, Jun. 2006.
doi:10.1109/TEVC.2005.857610

17. Qin, A. K. and P. N. Suganthan, "Self-adaptive differential evolution algorithm for numerical optimization," Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Vol. 2, 1785-1791, 2005.
doi:10.1109/CEC.2005.1554904

18. Wilcoxon, F., "Individual comparisons by ranking methods," Biometrics, Vol. 1, 80-83, 1945.

19. Derrac, J., S. García, D. Molina, and F. Herrera, "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms ," Swarm and Evolutionary Computation, Vol. 1, No. 1, 3-18, Mar. 2011.
doi:10.1016/j.swevo.2011.02.002