Vol. 40
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-04-04
The Maximum Torque of Synchronous Axial Permanent Magnetic Couplings
By
Progress In Electromagnetics Research B, Vol. 40, 1-29, 2012
Abstract
Axial permanent magnetic couplings are composed of two discs with a small air-gap in-between. Each disc consists of several segments in the shape of slices of cakes. The segments are polarized in axial direction with alternating polarity. In this work the homogeneous magnetization in the segments is replaced by equivalent currents on the surface of the segments (Amperean model). In a simplified model we consider only radial currents whereas azimuthal currents along the perimeter of the discs are discarded. This corresponds to the arrangement where one of the discs has much larger diameter than the other disc. Compared to the case of two equal discs it leads to a notable error in the magnetic field near the perimeter, yet it has only a small effect on the torque, especially for the case of optimum couplings. This trick allows for summing up the fields of all segments in closed form. A concise double integral over the radial magnetic field component describes the torque. An investigation of this integral reveals many properties of axial magnetic couplings: A diagram is introduced and areas in this diagram are identified where the torque shows overshoot, rectangular pulse shape or sinusoidal dependence versus twist angle between bothdiscs. The diagram contains also a curve for maximum torque and one point on this curve is of considerable economic significance: It denotes the global maximum of torque over magnet mass.
Citation
Udo Ausserlechner, "The Maximum Torque of Synchronous Axial Permanent Magnetic Couplings," Progress In Electromagnetics Research B, Vol. 40, 1-29, 2012.
doi:10.2528/PIERB12021508
References

1. Ausserlechner, U., "Closed analytical formulae for multi-pole magnetic rings," Progress In Electromagnetics Research B, Vol. 38, 71-105, 2012.        Google Scholar

2. Bancel, F. and G. Lemarquand, "Three-dimensional analytical optimization of permanent magnets alternated structure," IEEE Trans. Magn., Vol. 34, No. 1, 242-247, Jan. 1998.
doi:10.1109/20.650248        Google Scholar

3. Bancel, F., "Magnetic nodes," J. Phys. D: Appl. Phys., Vol. 32, 2155-2161, 1999.
doi:10.1088/0022-3727/32/17/304        Google Scholar

4. Liu, W. Z., C. Y. Xu, and Z. Y. Ren, "Research of the surface magnetic field of multi-pole magnetic drum of magnetic encoder," Int'l Conf. Sensors and Control Techniques, Proceedings of SPIE, D.-S. Jiang and A.-B. Wang, editors, Vol. 4077, 288-291, 2000.

5. Furlani, E. P., "A three-dimensional field solution for axially-polarized multipole discs," J. Magn. Magn. Mat., Vol. 135, 205-214, 1994.
doi:10.1016/0304-8853(94)90347-6        Google Scholar

6. Ravaud, R. and G. Lemarquand, "Magnetic field created by a uniformly magnetized tile permanent magnet," Progress In Electromagnetics Research B, Vol. 24, 17-32, 2010.
doi:10.2528/PIERB10062209        Google Scholar

7. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Magnetic field produced by a tile permanent magnet whose polarization is both uniform and tangential," Progress In Electromagnetics Research B, Vol. 13, 1-20, 2009.
doi:10.2528/PIERB08121901        Google Scholar

8. Ravaud, R. and G. Lemarquand, "Analytical expression of the magnetic field created by tile permanent magnets tangentially magnetized and radial currents in massive disks," Progress In Electromagnetics Research B, Vol. 13, 309-328, 2009.
doi:10.2528/PIERB09012704        Google Scholar

9. Nihei, H., "Analytic expressions of magnetic multipole field generated by a row of permanent magnets," Jap. J. Appl. Phys., Vol. 29, No. 9, 1831-1832, Sept. 1990.
doi:10.1143/JJAP.29.1831        Google Scholar

10. Ozeretskovskiy, V., "Calculation of two-dimensional nonperiodic multipole magnetic systems," Sov. J. Commun. Techn. and Electr., Vol. 36, No. 8, 81-92, Aug. 1991.        Google Scholar

11. Grinberg, E., "On determination of properties of some potential fields ," Applied Magnetohydrodynamics, Reports of the Physics Inst. Riga, Vol. 12, 147-154, 1961.        Google Scholar

12. Avilov, V. V., "Electric and magnetic fields for the riga plate," Internal Report FZR Forschungszentrum Rossendorf, Dresden, Germany, 1998. Published in a report by E. Kneisel, ``Numerische und experimentelle untersuchungen zur grenzschichtbee-inflüssung in schwach leitfähigen flüssigkeiten," Nov. 24, 2003, http://www.hzdr.de/FWS/FWSH/Mutschke/kleinerbeleg.pdf.        Google Scholar

13. De Visschere, P., "An exact two-dimensional model for a periodic circular array of head-to-head permanent magnets," J. Phys. D: Appl. Phys., Vol. 38, 355-362, 2005.
doi:10.1088/0022-3727/38/3/001        Google Scholar

14. Furlani, E. P. and M. A. Knewtson, "A three-dimensional field solution for permanent-magnet axial-field motors," IEEE Trans. Magn., Vol. 33, No. 3, 2322-2325, May 1997.
doi:10.1109/20.573849        Google Scholar

15. Furlani, E. P., "Analytical analysis of magnetically coupled multipole cylinders," J. Phys. D: Appl. Phys., Vol. 33, 28-33, 2000.
doi:10.1088/0022-3727/33/1/305        Google Scholar

16. Ravaud, R. and G. Lemarquand, "Magnetic couplings with cylindrical and plane air gaps: Influence of the magnet polarization direction," Progress In Electromagnetics Research B, Vol. 16, 333-349, 2009.
doi:10.2528/PIERB09051903        Google Scholar

17. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Torque in PM couplings: Comparison of uniform and radial magnetization," J. Appl. Phys., Vol. 105, 053904, 2009, DOI: 10.1063/1.3074108.
doi:10.1063/1.3074108        Google Scholar

18. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Permanent magnet couplings: Field and torque three-dimensional expressions based on the coulombian model," IEEE Trans. Magn., Vol. 45, No. 4, 195-1964, 2009.
doi:10.1109/TMAG.2008.2010623        Google Scholar

19. Yao, Y. D., G. J. Chiou, D. R. Huang, and S. J. Wang, "Theoretical computations for the torque of magnetic coupling," IEEE Trans. Magn., Vol. 31, No. 3, 1881-1884, May 1995.
doi:10.1109/20.376405        Google Scholar

20. Huang, D. R., G.-J. Chiou, Y.-D. Yao, and S.-J. Wang, "Effect of magnetization profiles on the torque of magnetic coupling," J. Appl. Phys., Vol. 76, No. 10, 6862-6864, Nov. 1994.
doi:10.1063/1.358094        Google Scholar

21. Yao, Y. D., D. R. Huang, C. C. Hsieh, D. Y. Chiang, S. J. Wang, and T. F. Ying, "The radial magnetic coupling studies of perpendicular magnetic gears," IEEE Trans. Magn., Vol. 32, No. 5, 5061-5063, Sept. 1996.
doi:10.1109/20.539490        Google Scholar

22. Tsamakis, D., M. Ioannides, and G. Nicolaides, "Torque transfer through plastic bonded Nd2Fe14B magnetic gear system," J. Alloys Compounds, Vol. 241, 175-179, 1996.
doi:10.1016/0925-8388(96)02353-5        Google Scholar

23. Nagrial, M. H., J. Rizk, and A. Hellany, "Design of synchronous torque couplers," World Academy of Science, Engineering and Technology, Vol. 79, 426-431, 2001.        Google Scholar

24. Furlani, E. P., "Formulas for the force and torque of axial couplings," IEEE Trans. Magn., Vol. 29, No. 5, 2295-2301, 1993.
doi:10.1109/20.231636        Google Scholar

25. Furlani, E. P., "Analysis and optimization of synchronous magnetic couplings," J. Appl. Physics, Vol. 79, No. 8, 4692-4694, 1996.
doi:10.1063/1.361872        Google Scholar

26. Furlani, E. P., "Field analysis and optimization of axial field permanent magnet motors," IEEE Trans. Magn., Vol. 33, No. 5, 3883-3885, 1997.
doi:10.1109/20.619603        Google Scholar

27. Furlani, E. P., "Computing the field in permanent-magnet axial-field motors," IEEE Trans. Magn., Vol. 30, No. 5, 3660-3663, 1994.
doi:10.1109/20.312734        Google Scholar

28. Furlani, E. P., "A method for predicting the field in permanent magnet axial-field motors," IEEE Trans. Magn., Vol. 28, No. 5, 2061-2066, 1992.
doi:10.1109/20.179400        Google Scholar

29. Nagrial, M. H., "Design optimization of magnetic couplings using high energy magnets," Electr. Machines and Power Systems, Vol. 21, No. 1, 115-126, 1993.
doi:10.1080/07313569308909638        Google Scholar

30. Lubin, T., S. Mezani, and A. Rezzoug, "Simple analytical expressions for the force and torque of axial magnetic couplings," IEEE Trans. Energy Conversion, Vol. 99, 1-11, 2012.        Google Scholar

31. Zheng, P., Y. Haik, M. Kilani, and C.-J. Chen, "Force and torque characteristics for magnetically driven blood pump," J. Magn. Magn. Mat., Vol. 241, 292-302, 2002.
doi:10.1016/S0304-8853(01)01372-5        Google Scholar

32. Kellog, O. D., "Electric images: Infinite series of images," Foundations of Potential Theory, Chapter IX 1, 230, Dover Publications, Inc., NY, 1954, ISBN 0-486-60144-7.        Google Scholar

33. Furlani, E. P., "Axial-field motor," Permanent Magnet and Electromechanical Devices, Chapter 5.13, Fig. 5.44, 434, Academic Press, San Diego, 2001, ISBN 0-12-269951-3.        Google Scholar

34. Waring, R., J. Hall, K. Pullen, and M. R. Etemad, "An investigation of face type magnetic couplers," Proc. Inst. Mech. Eng. A, J. Power and Energy, Vol. 210, No. 4, 263-272, 1996.
doi:10.1243/PIME_PROC_1996_210_045_02        Google Scholar