School of Electronic Engineering
University of Electronic Science and Technology of China
China
HomepageSchool of Electronic Engineering
University of Electronic Science and Technology of China
China
HomepageSchool of Electronic Engineering
University of Electronic Science and Technology of China (UESTC)
China
HomepageSchool of Electronic Engineering
University of Electronic Science and Technology of China
China
HomepageSchool of Electronic Engineering
University of Electronic Science and Technology of China (UESTC)
China
HomepageSchool of Electronic Engineering
University of Electronic Science and Technology of China
China
Homepage1. Guo, B., J. Li, H. Zmuda, and M. Sheplak, "Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 54, No. 11, 2000-2010, 2007.
doi:10.1109/TBME.2007.895108 Google Scholar
2. Ku, G., B. D. Fornage, X. Jin, M. Xu, K. K. Hunt, and L. V. Wang, "Thermo-acoustic and photo-acoustic tomography of thick biological tissues toward breast imaging," Technol. Cancer Res. Treat., Vol. 4, 1-7, 2005. Google Scholar
3. Geng, K. and L. V. Wang, "Scanning microwave-induced thermo-acoustic tomography: Signal, resolution, and contrast," Med. Phys., Vol. 28, No. 1, 4-10, 2001.
doi:10.1118/1.1333409 Google Scholar
4. Nie, L. M., D. Xing, Q. Zhou, D. W. Yang, and H. Guo, "Signal processing in scanning thermoacoustic tomography in biological tissues," Med. Phys., Vol. 35, No. 9, 4026-4032, 2008.
doi:10.1118/1.2966345 Google Scholar
5. Xu, Y. and L. V. Wang, "Microwave-induced thermo-acoustic scanning CT for high-contrast and noninvasive breast cancer imaging," Med. Phys., Vol. 28, 1519-1524, 2001.
doi:10.1118/1.1380436 Google Scholar
6. Feng, D., Y. Xu, G. Ku, and L. V. Wang, "Microwave-induced thermo-acoustic tomography: Reconstruction by synthetic aperture," Med. Phys., Vol. 28, 2427-2431, 2001.
doi:10.1118/1.1418015 Google Scholar
7. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Mora- bito, T. Isernia, and R. Massa, "On quantitative microwave to-mography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604 Google Scholar
8. Chen, G. P., Z. Q. Zhao, W. J. Zheng, Z. P. Nie, and Q. H. Liu, "Application of time reversal mirror technique in microwave-induced thermo-acoustic tomography system," Science in China Series E: Technological Science, Vol. 52, No. 7, 2087-2095, 2009.
doi:10.1007/s11431-009-0148-7 Google Scholar
9. Chen, G. P., Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "A computational study of time reversal mirror technique for microwave-induced thermo-acoustic tomography," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 12, 2191-2204, 2008.
doi:10.1163/156939308787522555 Google Scholar
10. Chen, G. P., W. B. Yu, Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11, 1574, 2008.
doi:10.1163/156939308786390021 Google Scholar
11. Zeng, L., D. Xing, H. Gu, D. Yang, S. Yang, and L. Xiang, "High anti-noise photo-acoustic tomography based on a modified filtered back projection algorithm with combination wavelet," Med. Phys., Vol. 34, 556-563, 2007.
doi:10.1118/1.2426406 Google Scholar
12. Xie, Y., B. Guo, J. Li, G. Ku, and L. V. Wang, "Adaptive and robust methods of reconstruction (ARMOR) for thermo-acoustic tomography," IEEE Trans. Biomed. Eng., Vol. 55, 2741-2752, 2008.
doi:10.1109/TBME.2008.919112 Google Scholar
13. Xu, M. and L. V. Wang, "Time-domain reconstruction for thermo-acoustic tomography in a spherical geometry," IEEE Trans. Med. Imag., Vol. 21, No. 7, 814-822, 2002.
doi:10.1109/TMI.2002.801176 Google Scholar
14. Yan, W., J.-D. Xu, N.-J. Li, and W.-X. Tan, "A novel fast near-field electromagnetic imaging method for full rotation problem," Progress In Electromagnetics Research, Vol. 120, 387-401, 2011. Google Scholar
15. Qi, Y., W. Tan, Y. Wang, W. Hong, and Y. Wu, "3D bistatic Omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry," Progress In Electromagnetics Research, Vol. 121, 409-431, 2011.
doi:10.2528/PIER11090205 Google Scholar
16. Kellnberger, S., A. Hajiaboli, D. Razansky, and V. Ntziachristos, "Near-field theroacoustic tomography of small animals," Phys. Med. Biol., Vol. 56, 3433-3444, 2011.
doi:10.1088/0031-9155/56/11/016 Google Scholar
17. Liu, Q. H., "The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media," IEEE Trans. Ultrason., Freroelect., Freq. Contr., Vol. 45, No. 4, 1044-1055, 1998.
doi:10.1109/58.710587 Google Scholar
18. Treeby, B. E. and B. T. Cox, "k-wave: MATLAB toolbox for the simulation and reconstruction of photo-acoustic wave fields," Journal of Biomedical Optics, Vol. 15, No. 2, 021314, 2010. Google Scholar
19. Chen, G. P. and Z. P. Nie, "Critical technologies research of the microwave-induced thermo-acoustic tomography system,", 17-19, Dissertation, University of Electronic Science and Technology of China, 2009. Google Scholar
20. Razansky, D., M. Distel, C. Vinegoni, and R. Ma, "Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo," Nature Photonics, Vol. 3, 412-417, 2009.
doi:10.1038/nphoton.2009.98 Google Scholar
21. Nie, L. M., D. Xing, D. W. Yang, L. M. Zeng, and Q. Zhou, "Detection of foreign body using fast thermo-acoustic tomography with a multi-element linear transducer array," Appl. Phys. Lett., Vol. 90, 174109-174111, 2007.
doi:10.1063/1.2732824 Google Scholar
22. Yang, D. W., D. Xing, S. H. Yang, and L. Z. Xiang, "Fast full-view photo-acoustic imaging by combined scanning with a linear transducer array," Opt. Express, Vol. 15, 15566-15575, 2007.
doi:10.1364/OE.15.015566 Google Scholar
23. Yuan, Z. and H. B. Jiang, "Quantitative photo-acoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media," Appl. Phys. Lett., Vol. 88, 231101-231103, 2006.
doi:10.1063/1.2209883 Google Scholar
24. Xu, Y. and L. V. Wang, "Reconstructions in limited-view thermo-acoustic tomography," Med. Phys., Vol. 31, 724-733, 2004.
doi:10.1118/1.1644531 Google Scholar
25. Lazebnik, M., "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
26. Su, J. L. and J. C. Lin, "Thermoelastic signatures of tissue phantom absorption and thermal expansion," IEEE Trans. Biomed. Eng., Vol. 43, 178-182, 1987. Google Scholar
27. Mashal, A., J. H. Booske, and S. C. Hagness, "Toward contrast-enhanced microwave-induced thermo-acoustic imaging of breast cancer: An experimental study of the effects of microbubbles on simple thermo-acoustic targets," Phys. Med. Biol., Vol. 54, 641-650, 2009.
doi:10.1088/0031-9155/54/3/011 Google Scholar