Vol. 43
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-08-06
An Image Correction Method Based on Electromagnetic Simulation for Microwave Induced Thermo-Acoustic Tomography System
By
Progress In Electromagnetics Research B, Vol. 43, 19-33, 2012
Abstract
In microwave induced thermo-acoustic tomography (MITAT) system, radiation of an antenna is a near field problem which gives rise to a non-uniform distribution of microwave radiation power in detection area. Due to this non-uniform distribution, the contrast of MITAT image which is proportional to the absorbed microwave energy will not reflect the real characteristics (dielectric properties) of biological tissues. In this paper, an image correction method based on electromagnetic simulation is proposed to correct the image contrast affected by the non-uniform microwave radiation distribution. First, the distribution of the microwave radiation power is simulated through a numerical simulation framework. Conventional time-reversal mirror (TRM) technique is applied to reconstruct the image. Then the microwave power distribution is applied to correct the image. The method is numerically demonstrated. The two samples with the same microwave absorption property and with different microwave absorption properties are experimentally investigated. Both numerical simulations and experimental results demonstrate the good performance of the proposed method.
Citation
Jian Song, Zhiqin Zhao, Jinguo Wang, Xiaozhang Zhu, Jiangniu Wu, Yulang Liu, and Qing Huo Liu, "An Image Correction Method Based on Electromagnetic Simulation for Microwave Induced Thermo-Acoustic Tomography System," Progress In Electromagnetics Research B, Vol. 43, 19-33, 2012.
doi:10.2528/PIERB12070215
References

1. Guo, B., J. Li, H. Zmuda, and M. Sheplak, "Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 54, No. 11, 2000-2010, 2007.
doi:10.1109/TBME.2007.895108

2. Ku, G., B. D. Fornage, X. Jin, M. Xu, K. K. Hunt, and L. V. Wang, "Thermo-acoustic and photo-acoustic tomography of thick biological tissues toward breast imaging," Technol. Cancer Res. Treat., Vol. 4, 1-7, 2005.

3. Geng, K. and L. V. Wang, "Scanning microwave-induced thermo-acoustic tomography: Signal, resolution, and contrast," Med. Phys., Vol. 28, No. 1, 4-10, 2001.
doi:10.1118/1.1333409

4. Nie, L. M., D. Xing, Q. Zhou, D. W. Yang, and H. Guo, "Signal processing in scanning thermoacoustic tomography in biological tissues," Med. Phys., Vol. 35, No. 9, 4026-4032, 2008.
doi:10.1118/1.2966345

5. Xu, Y. and L. V. Wang, "Microwave-induced thermo-acoustic scanning CT for high-contrast and noninvasive breast cancer imaging," Med. Phys., Vol. 28, 1519-1524, 2001.
doi:10.1118/1.1380436

6. Feng, D., Y. Xu, G. Ku, and L. V. Wang, "Microwave-induced thermo-acoustic tomography: Reconstruction by synthetic aperture," Med. Phys., Vol. 28, 2427-2431, 2001.
doi:10.1118/1.1418015

7. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Mora- bito, T. Isernia, and R. Massa, "On quantitative microwave to-mography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604

8. Chen, G. P., Z. Q. Zhao, W. J. Zheng, Z. P. Nie, and Q. H. Liu, "Application of time reversal mirror technique in microwave-induced thermo-acoustic tomography system," Science in China Series E: Technological Science, Vol. 52, No. 7, 2087-2095, 2009.
doi:10.1007/s11431-009-0148-7

9. Chen, G. P., Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "A computational study of time reversal mirror technique for microwave-induced thermo-acoustic tomography," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 12, 2191-2204, 2008.
doi:10.1163/156939308787522555

10. Chen, G. P., W. B. Yu, Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11, 1574, 2008.
doi:10.1163/156939308786390021

11. Zeng, L., D. Xing, H. Gu, D. Yang, S. Yang, and L. Xiang, "High anti-noise photo-acoustic tomography based on a modified filtered back projection algorithm with combination wavelet," Med. Phys., Vol. 34, 556-563, 2007.
doi:10.1118/1.2426406

12. Xie, Y., B. Guo, J. Li, G. Ku, and L. V. Wang, "Adaptive and robust methods of reconstruction (ARMOR) for thermo-acoustic tomography," IEEE Trans. Biomed. Eng., Vol. 55, 2741-2752, 2008.
doi:10.1109/TBME.2008.919112

13. Xu, M. and L. V. Wang, "Time-domain reconstruction for thermo-acoustic tomography in a spherical geometry," IEEE Trans. Med. Imag., Vol. 21, No. 7, 814-822, 2002.
doi:10.1109/TMI.2002.801176

14. Yan, W., J.-D. Xu, N.-J. Li, and W.-X. Tan, "A novel fast near-field electromagnetic imaging method for full rotation problem," Progress In Electromagnetics Research, Vol. 120, 387-401, 2011.

15. Qi, Y., W. Tan, Y. Wang, W. Hong, and Y. Wu, "3D bistatic Omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry," Progress In Electromagnetics Research, Vol. 121, 409-431, 2011.
doi:10.2528/PIER11090205

16. Kellnberger, S., A. Hajiaboli, D. Razansky, and V. Ntziachristos, "Near-field theroacoustic tomography of small animals," Phys. Med. Biol., Vol. 56, 3433-3444, 2011.
doi:10.1088/0031-9155/56/11/016

17. Liu, Q. H., "The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media," IEEE Trans. Ultrason., Freroelect., Freq. Contr., Vol. 45, No. 4, 1044-1055, 1998.
doi:10.1109/58.710587

18. Treeby, B. E. and B. T. Cox, "k-wave: MATLAB toolbox for the simulation and reconstruction of photo-acoustic wave fields," Journal of Biomedical Optics, Vol. 15, No. 2, 021314, 2010.

19. Chen, G. P. and Z. P. Nie, "Critical technologies research of the microwave-induced thermo-acoustic tomography system,", 17-19, Dissertation, University of Electronic Science and Technology of China, 2009.

20. Razansky, D., M. Distel, C. Vinegoni, and R. Ma, "Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo," Nature Photonics, Vol. 3, 412-417, 2009.
doi:10.1038/nphoton.2009.98

21. Nie, L. M., D. Xing, D. W. Yang, L. M. Zeng, and Q. Zhou, "Detection of foreign body using fast thermo-acoustic tomography with a multi-element linear transducer array," Appl. Phys. Lett., Vol. 90, 174109-174111, 2007.
doi:10.1063/1.2732824

22. Yang, D. W., D. Xing, S. H. Yang, and L. Z. Xiang, "Fast full-view photo-acoustic imaging by combined scanning with a linear transducer array," Opt. Express, Vol. 15, 15566-15575, 2007.
doi:10.1364/OE.15.015566

23. Yuan, Z. and H. B. Jiang, "Quantitative photo-acoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media," Appl. Phys. Lett., Vol. 88, 231101-231103, 2006.
doi:10.1063/1.2209883

24. Xu, Y. and L. V. Wang, "Reconstructions in limited-view thermo-acoustic tomography," Med. Phys., Vol. 31, 724-733, 2004.
doi:10.1118/1.1644531

25. Lazebnik, M., "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

26. Su, J. L. and J. C. Lin, "Thermoelastic signatures of tissue phantom absorption and thermal expansion," IEEE Trans. Biomed. Eng., Vol. 43, 178-182, 1987.

27. Mashal, A., J. H. Booske, and S. C. Hagness, "Toward contrast-enhanced microwave-induced thermo-acoustic imaging of breast cancer: An experimental study of the effects of microbubbles on simple thermo-acoustic targets," Phys. Med. Biol., Vol. 54, 641-650, 2009.
doi:10.1088/0031-9155/54/3/011