Vol. 47
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-01-08
An Efficient Imaging Approach for Tops SAR Data Focusing Based on Scaled Fourier Transform
By
Progress In Electromagnetics Research B, Vol. 47, 297-313, 2013
Abstract
This paper presents an efficient imaging algorithm for Terrain Observation by Progressive Scans (TOPS) mode SAR raw data focusing. First, the use of sub-aperture is adopted to overcome the aliased Doppler spectra due to progress azimuth beam scanning. Afterwards, range compression and range cell migration correction (RCMC) are individually implemented in each azimuth block with its individual Doppler centroid. After azimuth sub-aperture signal recombination, a new Doppler centroid varying rate is introduced to avoid the reconstructed Doppler spectra wrapping. Moreover, azimuth varying beam center time is removed by azimuth frequency scaling before the final azimuth spectrum analysis (SPECAN) step. Finally, the conventional Fourier transform (FT) is replaced by the scaled Fourier transform (SCFT) step to obtain the uniform azimuth space sampling interval. Since the proposed imaging algorithm is without any interpolations and azimuth data extension, it is highly efficient. Simulation results on point targets validate the proposed algorithm.
Citation
Pingping Huang, and Wei Xu, "An Efficient Imaging Approach for Tops SAR Data Focusing Based on Scaled Fourier Transform," Progress In Electromagnetics Research B, Vol. 47, 297-313, 2013.
doi:10.2528/PIERB12081804
References

1. Zan, F. D. and A. M. Guarnieri, "TOPSAR: Terrain observation by progressive scans," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 9, 2352-2360, Sep. 2006.
doi:10.1109/TGRS.2006.873853

2. Xu, W., P. Huang, and Y.-K. Deng, "Multi-channel SPCMB-TOPS SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.

3. Xu, W., P. Huang, and Y.-K. Deng, "MIMO-TOPS mode for high-resolution ultra-wide-swath full polarimetric imaging," Progress In Electromagnetics Research, Vol. 116, 533, 2011.

4. Meta, A., J. Mittermayer, P. Prats, R. Scheiber, and U. Steinbrecher, "TOPS imaging with TerraSAR-X: Mode design and performance analysis," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 2, 759-769, Feb. 2010.
doi:10.1109/TGRS.2009.2026743

5. Prats, P., R. Scheiber, J. Mittermayer, A. Meta, and A. Moreira, "Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 2, 770-780, 2010.
doi:10.1109/TGRS.2009.2027701

6. Mittermayer, J., P. Prats, D. D'Aria, R. Piantanida, S. Sauer, A. M. Guarnieri, E. Attema, and P. Snoeij, "TOPS Sentinel-1 and TerraSAR-X processor comparison based on simulated data," Proc. EUSAR, 1-4, Aachen, Germany, 2010.

7. Prats, P., L. Marotti, S. Wollstadt, et al. "TOPS interferometry with TerraSAR-X," Proc. EUSAR, 44-47, Aachen, Germany, 2010.

8. Xu, W. and Y. K. Deng, "Investigation on electronic azimuth beam steering in the spaceborne SAR imaging modes," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 2076-2088, 2011.
doi:10.1163/156939311798071983

9. Xu, W., P.-P. Huang, and Y.-K. Deng, "TOPSAR data focusing based on azimuth scaling preprocessing," Adv. Space Res., Vol. 48, No. 2, 270-277, 2011.
doi:10.1016/j.asr.2011.03.024

10. Xu, W., P.-P. Huang, Y.-K. Deng, J.-T. Sun, and X.-Q. Shang, "An efficient imaging approach with scaling factors for TOPS mode SAR data focusing," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 5, 929-933, Sep. 2011.
doi:10.1109/LGRS.2011.2135837

11. Prati, C., A. M. Guarnieri, and F. Rocca, "SPOT mode SAR focusing with the ω-k technique," Proc. IGARSS, Espoo, Finland, 1991.

12. Lanari, R., M. Tesauro, E. Sansosti, and G. Fornaro, "Spotlight SAR data focusing based on a two-step processing approach," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 9, 1993-2004, Sep. 2001.
doi:10.1109/36.951090

13. Lanari, R., S. Zoffoli, E. Sansosti, G. Fornaro, and F. Serafino, "New approach for hybrid strip-map/spotlight SAR data focusing," IEE Proc. --- Radar Sonar and Navig., Vol. 148, No. 6, 363-372, Dec. 2001.
doi:10.1049/ip-rsn:20010662

14. Lanari, R., "A new method for the compensation of the SAR range cell migration based on the chirp z-transform," IEEE Trans. Geosci. Remote Sens., Vol. 33, No. 5, 1296-1299, May 1995.
doi:10.1109/36.469496

15. Bai, X., J. P. Sun, and W. Hong, "On the TOPS mode spaceborne SAR," Science China --- Information Sciences, Vol. 53, No. 2, 367-378, Feb. 2010.
doi:10.1007/s11432-010-0030-z

16. Bamler, R., "A comparison of range-Doppler and wavenumber domain SAR focusing algorithm," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 4, 706-713, Apr. 1992.
doi:10.1109/36.158864

17. Moreira, A., J. Mittermayer, and R. Scheiber, "Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 5, 1123-1136, May 1996.
doi:10.1109/36.536528

18. Guarnieri, A. M. and C. Prati, "ScanSAR focusing and interferometry," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 4, 1029-1038, Apr. 1996.
doi:10.1109/36.508420

19. Mittermayer, J., R. Lord, and E. Boerner, "Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm," Proc. IGARSS, Toulouse, France, 2003.

20. Lanari, R., S. Hensley, and P. A. Rosen, "Chirp z-transform based on SPECAN approach for phase-preserving ScanSAR image generation," IEE Proc. --- Radar Sonar and Navig., Vol. 145, No. 5, Oct. 1998.

21. Wong, F. H. and T. S. Yeo, "An improved technique for the processing of short-dwell spotlight SAR data," IEEE Trans. Geosci. Remote Sens., Vol. 41, No. 5, 953-963, May 2003.
doi:10.1109/TGRS.2003.811078

22. Dai, C. and X. Zhang, "Omega-k algorithm for bistatic SAR with arbitrary geometry configuration," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1564-1576, 2011.
doi:10.1163/156939311797164972

23. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

24. An, D. X., Z.-M. Zhou, X.-T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth NLCS principle," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110

25. Wu, J., Z. Li, Y. Huang, Q. H. Liu, and J. Yang, "Processing one-stationary bistatic SAR data using inverse scaled fourier transform," Progress In Electromagnetics Research, Vol. 129, 143-159, 2012.