Vol. 53
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-07-11
One-Dimensional Photonic Crystal Selective Filters Design Using Simulated Annealing Optimization Technique
By
Progress In Electromagnetics Research B, Vol. 53, 107-125, 2013
Abstract
During the last decade, selective photonic crystal filters have received much research interest in the fields of nanotechnology and optical interconnection network. The main focus of this paper consists of an analysis and a synthesis of one-dimensional photonic crystal selective filters. The optimization is performed by employing the simulated annealing algorithm. The filters synthesis is obtained by acting on the Bragg grating layer widths. Simulated annealing is applied to solve the PhC-1D filters synthesis problem in order to reduce the quadratic error and to obtain a desired transmission according to a Gaussian function defined in advance by the user. Starting from the Maxwell's equations for dielectric nonmagnetic structure, we show the derivation of the Helmholtz equation and find its solution for 1D layered structure. In addition, the boundary conditions and equation transformation to set of linear equations which are solved using Cramer‟s method are described thoroughly. This mathematical technique is then applied for computation of the transmission spectra of 1D perfectly periodic structure and structures with different defects. These results can be easily applied for design of selective filters.
Citation
Hadjira Abri Badaoui, and Mehadji Abri, "One-Dimensional Photonic Crystal Selective Filters Design Using Simulated Annealing Optimization Technique," Progress In Electromagnetics Research B, Vol. 53, 107-125, 2013.
doi:10.2528/PIERB13052503
References

1. Badaoui, H., M. Feham, and M. Abri, "Double bends and Y-shaped splitter design for integrated optics," Progress In Electromagnetics Research Letters, Vol. 28, 129-138, 2012.
doi:10.2528/PIERL11102404        Google Scholar

2. Shambat, G., M. S. Mirotznik, G. Euliss, V. O. Smolski, E. G. Johnson, and R. A. Athal, "Photonic crystal filters for multi-band optical filtering on a monolithic substrate," Journal of Nanophotonics, Vol. 3, 031506, 2009.
doi:10.1117/1.3110223        Google Scholar

3. Rumpf, R. C., A. Mehta, P. Srinivasan, and E. G. Johnson, "Design and optimization of space-variant photonic crystal filters," Appl. Opt., Vol. 46, No. 23, 5755-5761, 2007.
doi:10.1364/AO.46.005755        Google Scholar

4. Solli, D. R., J. J. Morehead, C. F. McCormick, and J. M. Hickmann, "Revisiting photon tunneling through finite 1-D dielectric photonic crystals," Slow and Fast Light, Optical Society of America, 2008.        Google Scholar

5. Baldycheva, A., V. A. Tolmachev, T. S. Perova, Y. A. Zharova, E. V. Astrova, and K. Berwick, "Silicon photonic crystal filter with ultrawide passband characteristics," Optics Letters, Vol. 36, No. 10, 1854-1856, 2011.
doi:10.1364/OL.36.001854        Google Scholar

6. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," Journal of the Optical Society of America B, Vol. 23, 2566-2571, 2006.
doi:10.1364/JOSAB.23.002566        Google Scholar

7. Preble, S., M. Lipson, and H. Lipson, "Two-dimenisional photonic crystals designed by evolutionary algorithms," Applied Physics Letters, Vol. 86, 061111, 2005.
doi:10.1063/1.1862783        Google Scholar

8. Painter, O., JelenaVuckovic, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," Journal of the Optical Society of America B, Vol. 16, No. 2, 275-285, February 1999.
doi:10.1364/JOSAB.16.000275        Google Scholar

9. Muorino, A., C. Trucco, and S. Reggazoni, "Synthesis of unequally spaced arrays by simulated annealing," IEEE Transactions on Antennas and Propagation, Vol. 44, 119-122, 1996.        Google Scholar

10. Morris, D., "Simulated annealing applied to the misell algorithm for phase retrieval," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 143, 29-38, 1996.        Google Scholar

11. Coleman, C. M., E. J. Rothwell, and J. E. Ross, "Investigation of simulated annealing ant-colony optimization, and genetic algorithms for self-structuring antennas," IEEE Transactions on Antennas and Propagation, Vol. 52, 100-104, 2004.        Google Scholar

12. Abri, M., N. Boukli-hacene, and F. T. Bendimerad, "Application du recuit simulé à la synthµese d'antennes en réseau constituées d'éléments annulaires imprimés," Annales des Télécommunications, Vol. 60, No. 11, 1420-1438, 2005.        Google Scholar

13. Hedman, B. A., "An earlier date for `Cramer's Rule'," Historia Mathematica, Vol. 4, No. 26, 36-368, 1999.        Google Scholar

14. Arel, I. and K. Habgood, "A condensation-based application of Crame's rule for solving large-scale linear systems," Journal of Discrete Algorithms, Vol. 10, 98-109, 2012.        Google Scholar

15. Kirkpatrik, S., C. D. Gelliatt, and M. P. Vecchi, "Optimization by simulated annealing," Science, Vol. 220, No. 4598, 372-377, 1983.        Google Scholar

16. Rees, S. and R. C. Ball, "Criteria for an optimum simulated annealing schedule for problems of the travelling salesman type," J. Phy. A.: Math. Gen., Vol. 20, 1239, 1987.
doi:10.1088/0305-4470/20/5/032        Google Scholar

17. Corana, A., M. Marchesi, C. Martini, and S. Ridella, "Minimising multimodal functions of continuous variables with the `simulated annealing' algorithm," ACM Transactions on Mathematical Software, Vol. 13, 262-280, 1987.
doi:10.1145/29380.29864        Google Scholar