1. Badaoui, H., M. Feham, and M. Abri, "Double bends and Y-shaped splitter design for integrated optics," Progress In Electromagnetics Research Letters, Vol. 28, 129-138, 2012.
doi:10.2528/PIERL11102404 Google Scholar
2. Shambat, G., M. S. Mirotznik, G. Euliss, V. O. Smolski, E. G. Johnson, and R. A. Athal, "Photonic crystal filters for multi-band optical filtering on a monolithic substrate," Journal of Nanophotonics, Vol. 3, 031506, 2009.
doi:10.1117/1.3110223 Google Scholar
3. Rumpf, R. C., A. Mehta, P. Srinivasan, and E. G. Johnson, "Design and optimization of space-variant photonic crystal filters," Appl. Opt., Vol. 46, No. 23, 5755-5761, 2007.
doi:10.1364/AO.46.005755 Google Scholar
4. Solli, D. R., J. J. Morehead, C. F. McCormick, and J. M. Hickmann, "Revisiting photon tunneling through finite 1-D dielectric photonic crystals," Slow and Fast Light, Optical Society of America, 2008. Google Scholar
5. Baldycheva, A., V. A. Tolmachev, T. S. Perova, Y. A. Zharova, E. V. Astrova, and K. Berwick, "Silicon photonic crystal filter with ultrawide passband characteristics," Optics Letters, Vol. 36, No. 10, 1854-1856, 2011.
doi:10.1364/OL.36.001854 Google Scholar
6. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," Journal of the Optical Society of America B, Vol. 23, 2566-2571, 2006.
doi:10.1364/JOSAB.23.002566 Google Scholar
7. Preble, S., M. Lipson, and H. Lipson, "Two-dimenisional photonic crystals designed by evolutionary algorithms," Applied Physics Letters, Vol. 86, 061111, 2005.
doi:10.1063/1.1862783 Google Scholar
8. Painter, O., JelenaVuckovic, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," Journal of the Optical Society of America B, Vol. 16, No. 2, 275-285, February 1999.
doi:10.1364/JOSAB.16.000275 Google Scholar
9. Muorino, A., C. Trucco, and S. Reggazoni, "Synthesis of unequally spaced arrays by simulated annealing," IEEE Transactions on Antennas and Propagation, Vol. 44, 119-122, 1996. Google Scholar
10. Morris, D., "Simulated annealing applied to the misell algorithm for phase retrieval," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 143, 29-38, 1996. Google Scholar
11. Coleman, C. M., E. J. Rothwell, and J. E. Ross, "Investigation of simulated annealing ant-colony optimization, and genetic algorithms for self-structuring antennas," IEEE Transactions on Antennas and Propagation, Vol. 52, 100-104, 2004. Google Scholar
12. Abri, M., N. Boukli-hacene, and F. T. Bendimerad, "Application du recuit simulé à la synthµese d'antennes en réseau constituées d'éléments annulaires imprimés," Annales des Télécommunications, Vol. 60, No. 11, 1420-1438, 2005. Google Scholar
13. Hedman, B. A., "An earlier date for `Cramer's Rule'," Historia Mathematica, Vol. 4, No. 26, 36-368, 1999. Google Scholar
14. Arel, I. and K. Habgood, "A condensation-based application of Crame's rule for solving large-scale linear systems," Journal of Discrete Algorithms, Vol. 10, 98-109, 2012. Google Scholar
15. Kirkpatrik, S., C. D. Gelliatt, and M. P. Vecchi, "Optimization by simulated annealing," Science, Vol. 220, No. 4598, 372-377, 1983. Google Scholar
16. Rees, S. and R. C. Ball, "Criteria for an optimum simulated annealing schedule for problems of the travelling salesman type," J. Phy. A.: Math. Gen., Vol. 20, 1239, 1987.
doi:10.1088/0305-4470/20/5/032 Google Scholar
17. Corana, A., M. Marchesi, C. Martini, and S. Ridella, "Minimising multimodal functions of continuous variables with the `simulated annealing' algorithm," ACM Transactions on Mathematical Software, Vol. 13, 262-280, 1987.
doi:10.1145/29380.29864 Google Scholar