Vol. 55
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-09-23
2D Fdtlm Hybridization with Modal Method
By
Progress In Electromagnetics Research B, Vol. 55, 23-44, 2013
Abstract
This article focuses on the 2D hybrid technique between the Frequency Domain Transmission Line Matrix Method (FDTLM) and the Wave Concept Iterative Procedure (WCIP). 3D hybridization has already been studied, but results may be improved through a better knowledge of method order. Consequently, developing 2D hybridization aims at understanding the hybridization in simplest problems, especially because Transverse Electric (TE) and Transverse Magnetic (TM) are uncoupled. Our study dwells on accuracy and convergence order of the 2D hybrid method, which will help for 3D mesh use. In this perspective, the scattering nodes and electromagnetic elds expressions are established in the 2D general case with anisotropic materials. As a result, validation examples are presented to check the approach.
Citation
Caroline Girard, Asmaa Zugari, and Nathalie Raveu, "2D Fdtlm Hybridization with Modal Method," Progress In Electromagnetics Research B, Vol. 55, 23-44, 2013.
doi:10.2528/PIERB13060311
References

1. Taflove, K. Umashankar and K. Umashankar, "A hybrid moment method/finite-difference time-domain approach to electromagnetic coupling and aperture penetration into complex geometries," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 4, 617-627, Jul. 1982.
doi:10.1109/TAP.1982.1142860

2. Paulsen, K. D., D. R. Lynch, and J. W. Strohbehn, "Three-dimensional finite, boundary, and hybrid elements solutions of the Maxwell equations for lossy dielectric media," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 4, 682-693, Apr. 1988.
doi:10.1109/22.3572

3. Sroka, J., H. Baggenstos, and R. Ballisti, "On the coupling of the generalized multipole technique with the finite element method," IEEE Transactions on Magnetics, Vol. 26, No. 2, 658-661, Mar. 1990.
doi:10.1109/20.106403

4. Yuan, X. C., D. R. Lynch, and J. W. Strohbehn, "Coupling of finite element and moment methods for electromagnetic scattering from inhomogeneous objects," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 3, 386-393, Mar. 1990.
doi:10.1109/8.52246

5. Yuan, X. C., "Three-dimensional electromagnetic scattering from inhomogeneous objects by the hybrid moment and finite element method," IEEE Transactions on Microwave Theory and Techniques , Vol. 38, No. 8, 1053-1058, Aug. 1990.
doi:10.1109/22.57330

6. Boyse, W. E. and A. A. Seidl, "A hybrid finite element and moment method for electromagnetic scattering from inhomogeneous objects," Proceeding of the 7th Annual Review of Progress in Applied Computational Electromagnetics, 160-169, Mar. 1991.

7. Yuan, X. C., D. R. Lynch, and K. D. Paulsen, "Importance of normal field continuity in inhomogeneous scattering calculations," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 4, 638-642, Apr. 1991.
doi:10.1109/22.76426

8. Christopoulos, C., The Transmission-line Modeling Method,, IEEE Press, NJ, 1995.
doi:10.1109/9780470546659

9. Christopoulos, C., The Transmission-line Modeling (TLM) Method in Electromagnetic, Morgan and Claypool Publishers, CO, 2006.

10. Jin, H. and R. Vahldieck, "Direct derivations of TLM symmetrical condensed node and hybrid symmetrical condensed node from Maxwell's equations using centered di®erencing and averaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, 2554-2561, Dec. 1994.
doi:10.1109/22.339796

11. Jin, H. and R. Vahldieck, "A new frequency-domain TLM symmetrical condensed node derived directly from Maxwell'sequations," IEEE Transactions on Microwave Theory and Techniques International Symposium, Vol. 2, 487-490, 1995.

12. Raveu, N., T. P. Vuong, I. Terrasse, G.-P. Piau, G. Fontgalland and H. Baudrand, "Wave concept iterative procedure applied to cylinders," IEE Proceeding on Microwave Antenna and Propagation , Vol. 151, No. 5, 409-416, Oct. 2004.
doi:10.1049/ip-map:20040763

13. Wane, S., D. Bajon, H. Baudrand, and P. Gammand, "A new full-wave hybrid differential-integral approach for the investigation of multilayer structures including nonuniformly doped diffusions," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 200-214, 2005.
doi:10.1109/TMTT.2004.839905

14. N'gongo, R. S. and H. Baudrand, "A new approach for microstrip active antennas using modal F.F.T-algorithm," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1700-1703, 1999.

15. Sadiku, M. N. O., "Numerical Techniques in Electromagnetics," CRC Press, 2001.

16. Hesselbarth, J., "Passive microwave circuit elements analyzed with the frequency-domain TLM method," Thesis of Doctor of the Swiss Federal Institute of Technology Zurich, 2002.

17. Azizi, M., H. Aubert, and H. Baudrand, "A new iterative method for scattering problems," Proceedings of the European Microwave Conference, 255-258, 1995.

18. Zugari, A., M. Khalladi, M. I. Yaich, N. Raveu, and H. Baudrand, "New approach: WCIP and FDTLM hybridization," 2009 Mediterranean Microwave Symposium (MMS), 1-4, 2009.
doi:10.1109/MMS.2009.5409774

19. Glaoui, M., H. Trabelsi, H. Zairi, A. Gharsallah, and H. Baudrand, "A new computationally e±cient hybrid FDTLM-WCIP method," International Journal of Electronics, Vol. 96, No. 5, 537-548, 2009.
doi:10.1080/00207210902738059

20. Raveu, N. and O. Pigaglio, "Resolution de problemes hautes frequences par les schemas equivalents cours et exercices corriges," Editions Cepadues,, Apr. 2012.

21. Girard, C., N. Raveu, R. Perrussel, and S. Lanteri, "Hybridation entre la WCIP et des methodes volumiques," Journees Nationales Microondes (JNM), May 2013.
doi:(in French)

22. Nguyen, N. C., J. Peraire, and B. Cockburn, "Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations," Journal of Computational Physics, Vol. 230, No. 19, 7151-7175, Aug. 2011.
doi:10.1016/j.jcp.2011.05.018