Vol. 55
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-10-16
A Wall-Clutter Suppression Method Based on Spatial Signature in MIMO through -the-Wall Radar Imaging
By
Progress In Electromagnetics Research B, Vol. 55, 277-295, 2013
Abstract
In through-the-wall radar imaging (TWRI), wall returns are often stronger than target returns, which make the targets behind walls invisible in the radar image. Spatial filtering that relies on the removal of the spatial zero-frequency components is a useful way for wall-clutter mitigation. Unfortunately, it applies to through-the-wall radar (TWR) with synthetic aperture array only. In this paper, a method based on spatial signature is proposed to suppress the wall-clutter in multi-input and multi-output (MIMO) TWRI. Firstly, the traditional spatial filtering method is discussed, as well as the reasons for the inapplicability for MIMO TWR. Secondly, the wall and target spatial signatures based on MIMO array are analyzed, respectively. The results indicate that the former has stability and symmetry, whereas the latter not. Thirdly, according to the above differences, a new method, symmetry subtraction, is applied to describe the wall-clutter suppression procedure. Finally, simulation results demonstrate that the proposed method is efficient in mitigating the wall returns and highlighting the targets.
Citation
Lan Zi Zhang, Bi Ying Lu, Zhi-Min Zhou, and Xin Sun, "A Wall-Clutter Suppression Method Based on Spatial Signature in MIMO through -the-Wall Radar Imaging," Progress In Electromagnetics Research B, Vol. 55, 277-295, 2013.
doi:10.2528/PIERB13070103
References

1. Amin, M. G., Through-the-Wall Radar Imaging, CRC Press, Boca Raton, FL, 2011.
doi:10.1117/1.JEI.22.3.030901

2. Sisma, O., A. Gaugue, C. Liebe, and J. M. Ogier, "UWB radar: Vision through a wall," Personal Wireless Communications, Vol. 245, 241-251, 2007.
doi:10.1007/978-0-387-74159-8_23

3. Baranoski, E. J., "Through wall imaging: Historical perspective and future directions," IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 5173-5176, 2008.

4. Borek, S. E., "An overview of through the wall surveillance for homeland security," Proceedings of the 34th Applied Imagery and Pattern Recognition Workshop (AIPR05), Vol. 6, 2005.

5. Lubecke, V. M. and A. E. Fathy, "Through-the-wall radar life detection and monitoring," IEEE Microwave Symposium, 769-772, 2007.

6. Piccardi, M., "Background substraction techniques: A review," IEEE International Conference on Systems, Man and Cybernetics, Vol. 4, 3099-3104, 2004.

7. Ahmad, F. and M. G. Amin, "Through-the-wall radar imaging experiments," IEEE Workshop on Signal Processing Applications for Public Security and Forensics, SAFE-07, 1-5, 2007.

8. Wang, G. and M. G. Amin, "Imaging through unknown walls using different standoff distances," IEEE Trans. on Signal Processing, Vol. 54, No. 10, 4015-4025, 2006.
doi:10.1109/TSP.2006.879325

9. Jin, T., B. Chen, and Z. Zhou, "Image-domain estimation of wall parameters for autofocusing of through-the-wall SAR imagery," IEEE Trans. on Geosci. Remote Sens., Vol. 51, No. 3, 1836-1843, 2013.
doi:10.1109/TGRS.2012.2206395

10. Ahmad, F., M. G. Amin, and S. A. Kassam, "Synthetic aperture beamformer for imaging through a dielectric wall," IEEE Trans. on Aerosp. Electron., Vol. 41, No. 1, 271-283, 2005.
doi:10.1109/TAES.2005.1413761

11. Verma, P. K., A. N. Gaikwad, D. Singh, and M. J. Nigam, "Analysis of clutter reduction techniques for through wall imaging in UWB radar," Progress In Electromagnetics Research B, Vol. 17, 29-48, 2009.
doi:10.2528/PIERB09060903

12. Gaikwad, A. N., D. Singh, and M. J. Nigam, "Application of dielectric target behind the brick wall by stepped frequency continuous wave radar in ultra-wideband range," IET Radar Sonar and Navigation, Vol. 5, No. 4, 416-425, 2011.
doi:10.1049/iet-rsn.2010.0059

13. Ahmad, F. and M. G. Amin, "Wall clutter mitigation for MIMO radar configurations in urban sensing," Signal Processing for Communication, Radar and Sonar, 1165-1170, 2012.

14. Tivive, F. H. C., A. Bouzerdoum, and M. G. Amin, "An SVD-based approach for mitigating wall reflections in through-the-wall radar imaging," Proceedings of IEEE Radar Conference, 519-524, 2011.

15. Zhang, L., B. Lu, Z. Zhou, and X. Sun, "The clutter suppression based on FA and image contrast in TWI application," Proceedings of 2013 Third IEEE International Conference on Information Science and Technology (ICIST 2013), 1498-1502, 2013.

16. Zhang, L., B. Lu, Z. Zhou, and X. Sun, "The clutter suppression based on statistical techniques in TWI application," Proceedings of 2013 IEEE International Conference on Ultra-wideband (ICUWB 2013), 130-135, 2013.

17. Yoon, Y. S. and M. G. Amin, "Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging," IEEE Trans. on Geosci. Remote Sens., Vol. 47, No. 9, 3192-3208, 2009.
doi:10.1109/TGRS.2009.2019728

18. Haimovich, A. M., R. S. Blum, and L. J. Cimini, "MIMO radar with widely separated antennas," IEEE Signal Processing Magazine, Vol. 25, No. 1, 116-129, 2008.
doi:10.1109/MSP.2008.4408448

19. Schwartz, J. L. and B. D. Steinberg, "Ultrasparse, ultrawideband arrays," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 45, No. 2, 376-393, 1998.
doi:10.1109/58.660149

20. Jin, T., J. Lou, and Z. Zhou, "Extraction of landmine features using a forward-looking ground penetrating radar with MIMO array," IEEE Trans. on Geosci. Remote Sens., Vol. 50, No. 10, 4135-4144, 2012.
doi:10.1109/TGRS.2012.2188803

21. Chen, B., T. Jin, Z. Zhou, and B. Lu, "Estimation of pose angle for trihedral in ultrawideband virtual aperture radar," Progress In Electromagnetics Research, Vol. 138, 307-325, 2013.

22. McCorkle, J. W., "Focusing of synthetic aperture ultra wideband data," IEEE International Conference of Systems Engineering, 1-5, 1991.
doi:10.1109/ICSYSE.1991.161068

23. Yoon, Y. S. and M. G. Amin, "Behind-the-wall target indication (BWTI)," Proc. SPIE Radar Sens. Technol. XIII Conf., 73080S1-73080S12, 2009.

24. Lu, B., Y. Zhao, X. Sun, and Z. Zhou, "Design and analysis of ultra wide band split transmit virtual aperture array for through the wall imaging," International Journal of Antennas and Propagation, 2013, Doi: 10.1155/2013/934509.

25. Wang, H., B. Lu, Z. Zhou, and Q. Song, "Through-the-wall imaging and correction based on the estimation of wall parameters," Proceedings of 2011 IEEE CIE International Conference on Radar, 1327-1330, 2011.
doi:10.1109/CIE-Radar.2011.6159802

26. Dehmollaian, M. and K. Sarabandi, "Refocusing through building walls using synthetic aperture radar," IEEE Trans. on Geosci. Remote Sens., Vol. 46, No. 6, 1589-1599, 2008.
doi:10.1109/TGRS.2008.916212

27. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, MA, 2000.

28. Sun, X., B. Lu, T. Jin, and Z. Zhou, "A fast echo construction method in through the wall simulation and analysis," Proceedings of Image Analysis Signal Processing, 208-212, 2012.

29. Keller, J. B., "Geometrical theory of diffraction," Journal of the Optical Society of America, 116-130, 1962.
doi:10.1364/JOSA.52.000116

30. Jackson, J. A., B. D. Rigling, and R. L. Moses, "Canonical scattering feature models for 3D and bistatic SAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 2, 525-541, 2010.
doi:10.1109/TAES.2010.5461639

31. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain, Artech House, Boston, MA, 2000.

32. Dogaru, T. and C. Le, "SAR images of rooms and buildings based on FDTD computer models," IEEE Trans. on Geosci. Remote Sens., Vol. 47, No. 5, 1388-1401, 2009.
doi:10.1109/TGRS.2009.2013841

33. Pena, D., R. Feick, H. Hristov, and W. Grote, "Measurement and modeling of propagation losses in brick and concrete walls for the 900-MHz band," IEEE Trans. on Antennas and Propag., Vol. 51, No. 1, 31-39, 2003.
doi:10.1109/TAP.2003.808539