Vol. 54
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-09-16
Bluetooth/UWB Dual-Band Planar Diversity Antenna with WiMAX and WLAN Band-Notch Characteristics
By
Progress In Electromagnetics Research B, Vol. 54, 303-319, 2013
Abstract
In this paper, a stage wise realization of compact Bluetooth - UWB dual-band diversity antenna with WiMAX and WLAN band-notch characteristics is presented. The proposed structure consists of two co-planar semicircular dual band-notch monopole antennas, mounted with planar spiral. Individual antenna configuration provides an impedance bandwidth (VSWR < 2) for dual-band i.e. both Bluetooth and UWB bands. For dual band-notch characteristic, two sets of spirals are capacitively coupled with the feed line of antenna. This configuration provides band-notch (VSWR > 2) for WiMAX i.e. (3.3-3.6 GHz) and WLAN (5.13-5.85 GHz) bands. For enhancing reception capabilities of the proposed structure, twin coplanar antennas are used to fulfill diversity requirements. However, due to coplanar and close proximity to each other, there is high possibility of mutual coupling between coplanar antenna elements. To address the mutual coupling between elements, cross-strip variable-sized frequency selective structures are used. Antenna diversity of the proposed structure is validated by measuring radiation pattern characteristic and envelop co-relation factor (ECC). A good agreement between measured and simulated responses ensures that the proposed diversity antenna can be used for interference free Bluetooth/UWB dual-band applications.
Citation
Gopi Shrikanth Reddy, Ashish Chittora, Shilpa U. Kharche, Sanjeev Kumar Mishra, and Jayanta Mukherjee, "Bluetooth/UWB Dual-Band Planar Diversity Antenna with WiMAX and WLAN Band-Notch Characteristics," Progress In Electromagnetics Research B, Vol. 54, 303-319, 2013.
doi:10.2528/PIERB13080404
References

1. FCC "Federal Communication Commission revision of part 15 of commission's rules regarding ultra |--- Wideband transmission systems," First Report and Order FCC, Vol. 48, 2002.

2. Wu, Z. H., F. Wei, X.-W. Shi, and W.-T. Li, "A compact quad band-notched UWB Monopole antenna loaded one lateral L-shaped slot," Progress In Electromagnetics Research, Vol. 139, 303-315, 2013.

3. Azim, R. and M. T. Islam, "Compact planar UWB antenna with band notch characteristics for WLAN and DSRC," Progress In Electromagnetics Research , Vol. 133, 391-406, 2013.

4. Li, C.-M. and L.-H. Ye, "Improved dual band-notched UWB slot antenna with controllable notched bandwidth," Progress In Electromagnetics Research, Vol. 115, 477-493, 2011.

5. Xu, J., D. Shen, X. Zang, and K. Wu, "A compact disc UWB antenna with quintuple band rejections," IEEE Antenna and Wireless Propagation Letters, Vol. 11, 1517-1520, 2012.
doi:10.1109/LAWP.2012.2237010

6. Nguyen, D. T., D. H. Lee, and H. C. Park, "Very compact triple band-notch UWB antenna with quarter wavelength slots," IEEE Antenna and Wireless Propagation Letters, Vol. 11, 411-415, 2012.
doi:10.1109/LAWP.2012.2192900

7. Liu, X. L., Y.-Z. Yin, P. A. Liu, J. H. Wang, and B. Xu, "A CPW-fed dual band-notched UWB antenna with a pair of bended dual-L-shape parasitic branches," Progress In Electromagnetics Research, Vol. 136, 623-634, 2013.

8. Lin, C. C., P. Jin, and R. W. Ziolkowski, "Single dual and tri-band notch UWB antenna using capacitively loaded loop resonators," IEEE Transactions on Antennas and Propagation, Vol. 60, 102-110, 2012.
doi:10.1109/TAP.2011.2167947

19. Islam, M. T., R. Azim, and A. T. Mobashsher, "Triple band-notched planar UWB antenna using parasitic strips," Progress In Electromagnetics Research, Vol. 129, 161-179, 2012.

10. Xiong, L. and P. Gao, "Compact dual-band printed diversity an tenna for WiMAX/WLAN applications," Progress In Electromagnetics Research C, Vol. 32, 151-165, 2012.

11. Mao, C.-X., Q.-X. Chu, Y.-T. Wu, and Y.-H. Qian, "Design and investigation of closely-packed diversity UWB slot-antenna with high isolation," Progress In Electromagnetics Research C, Vol. 41, 13-25, 2013.

12. Zhang, S., J. Ying, and S. He, "UWB MIMO/diversity antenna ith a tree like structure to enhance wideband isolation," IEEE Antenna and Wireless Propagation Letters, Vol. 8, 1279-1283, 2009.
doi:10.1109/LAWP.2009.2037027

13. Terence, S. P. and Z. H. Chen, "An UWB diversity antenna," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 6, 1597-1606, 2012.

14. Gallo, M., et al. "A broad band pattern diversity annular slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1596-1601, 2012.
doi:10.1109/TAP.2011.2180314

15. Zuo, S., Y.-Z. Yin, W.-J. Wu, Z.-Y. Zhang, and J. Ma, "Investigations of reduction of mutual coupling between two planar monopoles using two 4 slots," Progress In Electromagnetics Research Letters, Vol. 19, 9-18, 2010.

16. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.

17. Mishra, S. K. and et al, "A compact dual band Fork shaped UWB antenna for Bluetooth and UWB applications," IEEE Antenna and Wireless Propagation Letters, Vol. 10, 627-630, 2011.
doi:10.1109/LAWP.2011.2159572

18. Li, W. T., Y. Q. Hei, W. Fang, and X. W. Shi, "Planar antenna for 3G/Bluetooth/WiMAX applications with dual band-notch characteristic," IEEE Antenna and Wireless Propagation Letters, Vol. 11, 61-65, 2012.

19. Yildirim, B. S., B. A. Cetiner, G. Roqueta, and L. Jofre, "Integrated bluetooth and UWB antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 149-152, 2009.
doi:10.1109/LAWP.2009.2013371

20. Yildirim, B. S., "Low profile and plannar antenna for blur tooth/WLAN and UWB application," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 438-441, 2006.
doi:10.1109/LAWP.2006.883080

21. Kumar, G. and K. P. Ray, Broad-band Microstrip Antenna,, Arctech House, 2003..

22. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple SRR for the realization of miniaturized metamaterial sample," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 6, 2258-2268, 2012.

23. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronic Letters, Vol. 39, No. 9, 705-707, 2003.
doi:10.1049/el:20030495

24. See, C. H., et al. "Compact MIMO/diversity antenna for portable mobile UWB applications," IET Microwave and Antenna Propagation Letters, Vol. 7, No. 6, 444-451, 2013.
doi:10.1049/iet-map.2012.0574