1. Zhang, J., Y. Zeng, J. Cheng, and X. Tang, "Optimization of permanent magnet guideway for HTS maglev vehicle with numerical methods," IEEE Trans. on Applied Superconductivity, Vol. 18, No. 3, 1681-1686, September 2008.
doi:10.1109/TASC.2008.2000900
2. Deng, Z., J. Zheng, J. Li, G. Ma, Y. Lu, Y. Zhang, S. Wang, and J. Wang, "Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway," Materials Science and Engineering B, Vol. 151, 117-121, 2008.
doi:10.1016/j.mseb.2008.03.011
3. Liu, L., J.Wang, S.Wang, L.Wang, and J. Li, "Flux concentrator optimization of PMG for high-temperature superconducting maglev vehicle system," J. Low Temperature Physics, Vol. 157, 67-72, 2009.
doi:10.1007/s10909-009-9926-7
4. Del-Valle, N., "Magnet guideways for superconducting maglevs: Comparison between Halbach-type and conventional arrangements of permanent magnets," J. Low Temperature Physics, Vol. 162, 62-71, 2011.
doi:10.1007/s10909-010-0225-0
5. Dias, D. H. N., G. G. Sotelo, F. Sass, E. S. Motta, R. de Andrade, Jr., and R. M. Stephan, "Dynamical tests in a linear superconducting magnetic bearing," Physics Procedia, Vol. 36, 1049-1054, 2012.
doi:10.1016/j.phpro.2012.06.104
6. Stephan, R. M., R. Nicolsky, M. A. Neves, A. C. Ferreira, R. de Andrade, Jr., M. A. Cruz Moreira, M. A. Rosario, and O. J. Machado, "A superconducting levitation vehicle prototype," Physica C, Vol. 408, 932-934, 2004.
doi:10.1016/j.physc.2004.03.169
7. Jin, J., L. Zheng, Y. Guo, W. Xu, and J. Zhu, "Analysis and experimental validation of an HTS linear synchronous propulsion prototype with HTS magnetic suspension," Physica C, Vol. 471, 520-527, 2011.
doi:10.1016/j.physc.2011.05.250
8. Werfel, F. N., U. Floegel-Delor, R. Rothfeld, T. Riedel, D. Wippich, B. Goebel, and P. Schirrmeister, "Bulk superconductors in mobile application," Physics Procedia, Vol. 36, 948-952, 2012.
doi:10.1016/j.phpro.2012.06.235
9. Werfel, F. N., U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, and P. Schirrmeister, "Superconductor bearings, flywheels and transportation," Superconductor Science and Technology, Vol. 25, 1-16, 2012.
10. Male, G., T. Lubin, S. Mezani, and J. Leveque, "Analytical calculation of the flux density distribution in a superconducting reluctance machine with HTS bulks rotor," Mathematics and Computers in Simulation, 1-14, 2013.
11. Motta, E. S., R. M. Stephan, J. H. Norman, H. C. Ramos, G. G. Sotelo, and D. H. N. Dias, "Optimization of superconducting magnetic rail using a feasible direction interior point algorithm," International Conference on Engineering Optimization, 1-5, June 2008.
12. Li, W., K. T. Chau, and J. Li, "Simulation of a tubular linear magnetic gear using HTS bulks for field modulation," IEEE Trans. on Applied Superconductivity, Vol. 21, No. 3, 1167-1170, June 2011.
doi:10.1109/TASC.2010.2080255
13. Motta, E. S., D. H. N. Dias, G. G. Sotelo, H. O. C. Ramos, J. H. Norman, and R. M. Stephan, "Optimization of a linear superconducting levitation system," IEEE Trans. on Applied Superconductivity, Vol. 21, No. 5, 3548-3554, October 2011.
doi:10.1109/TASC.2011.2161986
14. Barba, P. D. and R. Palka, "Optimization of the HTSC-PM interaction in magnetic bearings by a multiobjective design," Studies in Computational Intelligence, Vol. 119, 83-90, 2008.
doi:10.1007/978-3-540-78490-6_10
15. Palka, R., "Modeling of high temperature superconductors and their practical applications," International Compumag Society Newsletter, Vol. 12, No. 3, 3-12, November 2005.
16. Lu, Y., X. Bai, Y. Ge, and J. Wang, "Influence of thickness on the levitation force of high-Tc bulk over a permanent magnetic guideway with numerical method ," J. Supercond Nov. Magn., Vol. 24, 1967-1970, 2011.
doi:10.1007/s10948-011-1154-0
17. Dias, D. H. N., E. S. Motta, G. G. Sotelo, and R. Andrade, Jr., "Experimental validation of field cooling simulations for linear superconducting magnetic bearings," Superconductor Science and Technology, Vol. 23, 1-6, 2010.
18. Dias, D. H. N., E. S. Motta, G. G. Sotelo, R. Andrade, R. M. Stephane, L. Kuehn, O. Haas, and L. Schultz, "Simulations and tests of superconducting linear bearings for a MAGLEV prototype," IEEE Trans. on Applied Superconductivity, Vol. 19, No. 3, 2120-2123, June 2009.
doi:10.1109/TASC.2009.2019203
19. Jin, J. X., L. H. Zheng, Y. G. Guo, J. G. Zhu, C. Grantham, C. C. Sorrel, and W. Xu, "High-temperature superconducting linear synchronous motors integrated with HTS magnetic levitation components," IEEE Trans. on Applied Superconductivity, Vol. 22, No. 5, 5202617, October 2012.
doi:10.1109/TASC.2012.2210893
20. Ma, G.-T., "Considerations on the finite-element simulation of high-temperature superconductors for magnetic levitation purposes," IEEE Trans. on Applied Superconductivity, Vol. 23, No. 5, 3601609, October 2013.
doi:10.1109/TASC.2013.2259488
21. Wang, S., J. Zheng, H. Song, X.Wang, and J.Wang, "Experiment and numerical calculation of high temperature superconducting maglev," IEEE Trans. on Applied Superconductivity , Vol. 15, No. 2, 2277-2280, June 2005.
doi:10.1109/TASC.2005.849630
22. Zheng, J., H. Song, J. Wang, S. Wang, M. Liu, and H. Jing, "Numerical method to the excited high-tc superconducting levitation system above the NdFeB guideway," IEEE Trans. on Magnetics, Vol. 42, No. 4, 947-950, April 2006.
doi:10.1109/TMAG.2006.871639
23. Dias, D. H. N., G. G. Sotelo, and R. Andrade, "Study of the lateral force behavior in a fild cooled superconducting linear bearing," IEEE Trans. on Applied Superconductivity, Vol. 21, No. 3, 1533-1537, June 2011.
doi:10.1109/TASC.2010.2090635
24. Costamagna, E., P. D. Barba, M. E. Mognaschi, and A. Savini, "Fast algorithms for the design of complex-shape devices in electromechanics," Computational Methods for Electrical Devices Design, Vol. 327, 59-86, 2010.
doi:10.1007/978-3-642-16225-1_4
25. Boughrara, K., T. Lubin, R. Ibtiouen, and N. Benallal, "Analytical calculation of parallel double excitation and spoke-type permanent-magnet motors; simplified versus exact model," Progress In Electromagnetics Research B, Vol. 47, 145-178, 2013.
26. Lubin, T., K. Berger, and A. Rezzoug, "Inductance and force calculation for axisymmetric coil systems including an iron core of finite length," Progress In Electromagnetics Research B, Vol. 41, 377-396, 2012.
27. Sotelo , G. G., D. H. N. Dias, R. Andrade, Jr., R. M. Stephane, N. Del-Valle, A. Sanchez, C. Navau, and D. Chen, "Experimental and theoretical levitation forces in a superconducting bearing for a real-scale maglev system," IEEE Trans. on Applied Superconductivity, Vol. 21, No. 5, 3532-3540, October 2011.
doi:10.1109/TASC.2011.2159114
28. Sotelo, G. G., D. H. N. Dias, O. J. Machado, E. D. David, R. Andrade, Jr., R. M. Stephane, and G. C. Costa, "Experiments in a real scale maglev vehicle prototype," Journal of Physics: Conference Series, Vol. 234, No. 032054, 1-7, 2010.
29. Sotelo, G. G., R. de Andrade, Jr., D. H. N. Dias, A. C. Ferreira, F. Costa, O. J. Machado, R. A. H. de Oliveira, M. D. A. Santos, and R. M. Ste, "Tests with one module of the Brazilian Maglev-Cobra vehicle," IEEE Trans. on Applied Superconductivity , Vol. 23, No. 3, 3601204, June 2013.
doi:10.1109/TASC.2013.2237875
30. Wang, J., S. Wang, and J. Zheng, "Recent development of high temperature superconducting maglev system in China," IEEE Trans. on Applied Superconductivity, Vol. 19, No. 3, 2142-2142, June 2009.
doi:10.1109/TASC.2009.2018110
31. Meeker, D. C., Finite Element Method Magnetics, Ver. 4.2 (April 1, 2009 Build).
doi:http://www.femm.info