Vol. 60
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-05-13
Bistatic RCS Prediction of Composite Scattering from Electrically Very Large Ship-Sea Geometry with a Hybrid Facet-Based Ka and Shadow-Corrected Greco Scheme
By
Progress In Electromagnetics Research B, Vol. 60, 35-48, 2014
Abstract
This paper presents a hybrid scheme for fast calculation on the bistatic composite scattering from electrically very large ship-sea geometry at high frequencies. Based on the Kirchhoff approximation (KA), we try to break the large-scale sea surface into myriads of plane facets, then derive the Kirchhoff integration analytically on each individual discretized facet. The analytical expression obtained, so-called the ``facet-based Kirchhoff approximation (FBKA)'', is suitable for a quick scattering calculation on the electrically very large sea surface, since it is beyond the intensively refined meshes as the usual Monte Carlo implementation does. Meanwhile, combined with graphical electromagnetic computing method (GRECO) to extract the illuminated and shadow facets in accordance with the incident direction, the conventional physical optics method (PO) is improved by employing current marching technique (CMT) to calculate the currents in the shadow region. The shadow-corrected GRECO is presented in this hybrid model to solve the bistatic scattering from complex and very electrically large perfectly electric conducting (PEC) objects. The accuracy of the shadow-corrected GRECO is confirmed well by exact numerical methods, especially at large scattering angles. The electromagnetic interactions between the ship and sea surface are estimated by the famous ``four-path model'', which has been proved to be valid for ship scattering at relatively calm sea state. Several numerical examples have been presented to demonstrate the efficiency and accuracy of the proposed hybrid method.
Citation
Mingyuan Man, Zhen-Ya Lei, Yong-Jun Xie, and Xiaofeng Li, "Bistatic RCS Prediction of Composite Scattering from Electrically Very Large Ship-Sea Geometry with a Hybrid Facet-Based Ka and Shadow-Corrected Greco Scheme," Progress In Electromagnetics Research B, Vol. 60, 35-48, 2014.
doi:10.2528/PIERB14021003
References

1. Jin, Y. Q., "Advances in numerical simulation of composite scattering from target above rough surface," 9th International Symposium on Antennas Propagation and EM Theory (ISAPE), 806-809, 2010.
doi:10.1109/ISAPE.2010.5696592

2. Baussard, A., M. Rochdi, and A. Khenchaf, "PO/MEC-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
doi:10.2528/PIER10083005

3. Zhang, M., W. Luo, G. Luo, C. Wang, and H. C. Yin, "Composite scattering of ship on sea surface with breaking waves," Progress In Electromagnetics Research, Vol. 123, 263-277, 2012.
doi:10.2528/PIER11100811

4. Ji, W. J. and C. M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-SMCG method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101

5. Wu, Z. S., J. J. Zhang, and L. Zhao, "Composite electromagnetic scattering from the plate target above a one-dimensional sea surface: Taking the di?raction into account," Progress In Electromagnetics Research, Vol. 92, 317-331, 2009.
doi:10.2528/PIER09032902

6. Wang, X., C. F. Wang, Y. B. Gan, and L. W. Li, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
doi:10.2528/PIER02111901

7. Ku, H. C., R. S. Awadallah, R. L. McDonald, and N. E. Woods, "Fast and accurate algorithm for electromagnetic scattering from 1-D dielectric ocean surfaces," IEEE Trans. Antennas Propag., Vol. 54, No. 8, 2381-2391, 2006.
doi:10.1109/TAP.2006.879193

8. Guo, L. X., A. Q. Wang, and J. Ma, "Study on EM wave scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel MoM based on PC clusters," Progress In Electromagnetics Research, Vol. 89, 149-166, 2009.
doi:10.2528/PIER08121002

9. Ozgun, O. and M. Kuzuoglu, "Monte carlo-based characteristic basis finite-element method (MC-CBFEM) for numerical analysis of scattering from objects on/above rough sea surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 3, 769-783, 2012.
doi:10.1109/TGRS.2011.2162650

10. Li, J. and L. X. Guo, "FDTD investigation on the bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition," Progress In Electromagnetics Research, Vol. 88, 197-211, 2008.
doi:10.2528/PIER08110102

11. Li, J. and L. X. Guo, "Investigation on wide-band scattering of a target above randomly rough surface by FDTD method," Optics Express, Vol. 19, No. 2, 1091-1100, 2011.
doi:10.1364/OE.19.001091

12. Holliday, D., L. L. DeRaad, and G. J. St-Cy, "Forward-backward: A new method for computing low-grazing angle scattering," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 722-729, 1996.
doi:10.1109/8.496263

13. Li, Z. X. and Y. Q. Jin, "Numerical simulation of bistatic scattering from a fractal rough surface using the forward backward method," Electromagnetics, Vol. 22, No. 3, 191-207, 2002.
doi:10.1080/02726340252886465

14. Rodriguez Pino, M., L. Landesa, J. L. Rodriguez, F. Obelleiro, and R. J. Burkholder, "The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces," IEEE Trans. Antennas and Propag., Vol. 47, No. 6, 961-969, 1999.
doi:10.1109/8.777118

15. Li, Z. X. and Y. Q. Jin, "Bistatic scattering from a fractal dynamic rough sea surface with a ship presence at low grazing-angle incidence using the GFBM/SAA," Microw. Opt. Techn. Let., Vol. 31, No. 2, 146-151, 2001.
doi:10.1002/mop.1383

16. Michalski, K. A. and J. R. Mosig, "Multilayered media Green's functions in integral equation formulations," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 508-519, 1997.
doi:10.1109/8.558666

17. Liu, Z. J., J. Q. He, Y. J. Xie, A. Sullivan, and L. Carin, "Multilevel fast multipole algorithm for general targets on a half-space interface," IEEE Trans. Antennas Propag., Vol. 50, No. 12, 1838-1849, 2002.
doi:10.1109/TAP.2002.807425

18. Li, X. F., Y. J. Xie, P. Wang, and T. M. Yang, "High-frequency method for scattering from electrically large conductive targets in half-space," IEEE Antennas Wireless Propaga. Lett., Vol. 6, 259-262, 2007.
doi:10.1109/LAWP.2007.897509

19. Li, X. F., Y. J. Xie, and R. Yang, "High-frequency method for scattering from coated targets with electrically large size in half space," IET Microwaves, Antennas & Propagation, Vol. 3, No. 2, 181-186, 2009.
doi:10.1049/iet-map:20070287

20. Guan, B., J. F. Zhang, X. Y. Zhou, and T. J. Cui, "Electromagnetic scattering from objects above a rough surface using the method of moments," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 10, 3399-3405, 2009.
doi:10.1109/TGRS.2009.2022169

21. Zhang, Y., Y. E. Yang, H. Braunish, and J. A. Kong, "Electromagnetic wave interaction of conducting object with rough surface by hybrid SPM/MoM technique," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 7, 983-984, 1999.
doi:10.1163/156939399X00457

22. Ye, H. X. and Y. Q. Jin, "A hybrid analytic-numerical algorithm of scattering from an object above a rough surface," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 5, 1174-1180, 2007.
doi:10.1109/TGRS.2007.892609

23. Zhang, X. Y. and X. Q. Sheng, "An e±cient hybrid KA-MoM method for scattering from objects above a rough surface," Asia-Paciˉc Microwave Conference, 16-20, Dec. 2008.

24. Yang, W., W. Yang, Z. Q. Zhao, C. H. Qi, W. Liu, and Z. P. Nie, "Iterative hybrid method for electromagnetic scattering from a 3-D object above a 2-D random dielectric rough surface," Progress In Electromagnetics Research, Vol. 17, 435-448, 2011.

25. Li, J., L. X. Guo, Q. He, and R. W. Xu, "Characterization of 3D electromagnetic scattering from PEC man-made target above rough surface," Microwave and Millimeter Wave Technology (ICMMT), Vol. 2, 1-4, 2012.

26. Li, J., B. Wei, Q. He, L. X. Guo, and D. B. Ge, "Time-domain iterative physical optics method for analysis of EM scattering from the target half buried in rough surface: PEC case," Progress In Electromagnetics Research, Vol. 121, 391-408, 2011.
doi:10.2528/PIER11082906

27. Beckmann, P. and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Pergamon, New York, 1963.

28. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Volume II, Addison-Wesley Publishing Company, Canada, 1982.

29. Barrick, D. E., "Rough surface scattering based on the specular point theory," IEEE Trans. Antennas Propag., Vol. 16, No. 4, 449-454, 1968.
doi:10.1109/TAP.1968.1139220

30. Hesany, V., W. J. Plant, and W. C. Keller, "The normalized radar cross section of the sea at 10o incidence," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 1, 64-72, 2000.
doi:10.1109/36.823902

31. Tessendorf, J., "Simulating ocean water. Simulating nature: Realistic and interactive techniques,", ACM SIGGRAPH 2001 Course Notes #47, 2001.

32. Hasselmann, K., et al. "Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP),", Repository Hydraulic Engineering Reports, Deutsches Hydrographisches Institut, Hamburg, 1973.

33. Rius, J. M., M. Ferrando, and L. Jofre, "High-frequency RCS of complex radar targets in real-time," IEEE Trans. Antennas Propag., Vol. 41, No. 9, 1308-1319, 1993.
doi:10.1109/8.247759

34. Zaporozhets, A. A. and M. F. Levy, "Bistatic RCS calculation with the vector parabolic equation method," IEEE Trans. Antennas Propag., Vol. 47, 1688-1696, 1999.
doi:10.1109/8.814948

35. Johnson, J. T., "A numerical study of scattering from an object above a rough surface," IEEE Trans. Antennas Propag., Vol. 50, No. 10, 1361-1367, 2002.
doi:10.1109/TAP.2002.802152

36. Wang, Y. and X. J. Xu, "On wideband radar signature simulation of ships over sea surface," Acta Aeronautica et Astronautica Sinica, Vol. 30, No. 2, 337-342, 2009.

37. Franceschetti, G., M. Migliaccio, and D. Riccio, "On ocean SAR raw signal simulation," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 1, 84-100, 1998.
doi:10.1109/36.655320