Vol. 59
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
Enhanced the Complete Photonic Band Gaps for Three-Dimensional Photonic Crystals Consisting of Epsilon-Negative Materials in Pyrochlore Arrangement
Progress In Electromagnetics Research B, Vol. 59, 231-244, 2014
In this paper, the properties of photonic band gaps (PBGs) for three-dimensional (3D) photonic crystals (PCs) composed of isotropic positive-index materials and epsilon-negative materials with pyrochlore lattices are theoretically investigated by a modified plane wave expansion method. The eigenvalue equations of calculating the band structure for such 3D PCs in the first irreducible Brillouin zone (spheres with the isotropic positive-index materials inserted in the epsilon-negative materials background) are theoretically deduced. Numerical simulations show that the PBG and a flatbands region can be achieved. It is also found that the larger PBG can be obtained in such PCs structure than the conventional lattices, such as diamond, face-centered-cubic, body-centered-cubic and simple-cubic lattices. The influences of the relative dielectric constant of spheres, filling factor, electronic plasma frequency, dielectric constant of epsilon-negative materials and damping factor on the properties of the PBG for such 3D PCs are studied in detail, respectively, and some corresponding physical explanations are also given. The calculated results also show that the PBG can be manipulated by the parameters mentioned above except for the damping factor. Introducing the epsilon-negative materials into 3D dielectric PCs can obtain the complete and larger PBGs as such 3D PCs with pyrochlore lattices, and also provides a way to design the potential devices.
Hai Feng Zhang, Shaobin Liu, and Hui-Chao Zhao, "Enhanced the Complete Photonic Band Gaps for Three-Dimensional Photonic Crystals Consisting of Epsilon-Negative Materials in Pyrochlore Arrangement," Progress In Electromagnetics Research B, Vol. 59, 231-244, 2014.

1. Yablonovitch, E., "Inhibited spontaneous emission of photons in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2061, 1987.

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.

3. Rybin, M. V., A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, "Fano resonance between Mie and Bragg scattering in photonic crystals," Phys. Rev. Lett., Vol. 103, 023901-1-023901-4, 2009.

4. Knight, J. C., J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science, Vol. 284, 1476-1478, 1999.

5. Painter, O., R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic bandgap defect mode laser," Science, Vol. 284, 1819-1821, 1999.

6. Miyai, E., M. Okano, M. Mochizuki, and S. Noda, "Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide," Appl. Phy. Lett., Vol. 81, 3729-3731, 2002.

7. Happ, T. D., M. Kamp, A. Forchel, J. L. Gentner, and L. Goldstein, "Two-dimensional photonic crystal couple-defect laser diode," Appl. Phy. Lett., Vol. 82, 4-6, 2003.

8. Zhang, H. F., M. Li, and S. B. Liu, "Defect mode properties of magnetized plasma photonic crystals," Acta Phys. Sin., Vol. 58, 1071-1076, 2009.

9. Zhang, H. F., S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, "Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer," Phys. Plasmas, Vol. 19, 022103, 2012.

10. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and Y. Dai, "Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure," Phys. Plasmas, Vol. 19, 22102, 2012.

11. Kwon, S. H., H. Y. Ryu, G. H. Kim, Y. H. Lee, and S. B. Kim, "Photonic bandedge lasers in a two-dimensional square-lattice photonic crystal slab," Appl. Phys. Lett., Vol. 83, 3872-3879, 2002.

12. Monat, C., C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, and E. Jala, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett., Vol. 81, 5102-5104, 2002.

13. Hattori, H. T., I. McKerracher, H. H. Tan, C. Jagadish, R. Michael, and D. L. Rue, "In-plane coupling of light from InP-based photonic crystal band-edge lasers into single-mode waveguides," IEEE J. Quantum Electron, Vol. 43, 279-286, 2007.

14. Zhang, , H. Y., Y. P. Zhang, W. H. Liu, Y. Q. Wang, J. G. Yang, "Zero-averaged refractive-index gaps extension by using photonic heterostructures containing negative-index materials," Appl. Phys. B, Vol. 96, 67-70, 2009.

15. Deng, X. H., J. T. Liu, J. H. Huang, L. Zou, and N. H. Liu, "Omnidirectional bandgaps in Fibonacci quasicrystals containing single-negative materials," J. Phys.: Condens. Matter, Vol. 22, 055403, 2010.

16. Mocella, V., S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, "Self collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial," Phys. Rev. Lett., Vol. 102, 122902, 2009.

17. Kocaman, S., M. S. Aras, P. Hsieh, J. F. McMillan, C. G. Biris, N. C. Panoiu, M. B. Yu, D. L. Kwong, A. Stein, and C. W. Wong, "Zero phanse delay in negative-refractive-index photonic crystals supperlattices," Nature Photonics, Vol. 5, 499-505, 2011.

18. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, 509-514, 1968.

19. Chen, Y., "Broadband one-dimensional photonic crystal wave plate containing single-negative materials," Opt. Express, Vol. 13, 19920-19929, 2010.

20. Chen, Y., "Broadband wave plates: Approach from one-dimensional photonic crystals containing metamaterials," Phys. Lett. A, Vol. 375, 1156-1159, 2011.

21. Wang, L. G., H. Chen, and S. Y. Zhu, "Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials," Phys. Rev. B, Vol. 70, 245102-1-245102-6, 2004.

22. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and Y N Guo, "Dispersion properties of two-dimensioanl plasma photonic crystals with periodically external magnetic field," Solid State Commun., Vol. 152, 1221-1229, 2012.

23. Zhang, H. F., X. K. Kong, and S. B. Liu, "Analsys of the properties of tunable prohibited band gaps for two-dimensional unmagnetized plasma photonic crystals under TM mode," Acta Phys. Sin., Vol. 60, 055209, 2011.

24. Zhang, H. F., S. B. Liu, and X. K. Kong, "Defect mode properties of two-dimensional unmagnetized plasma photonic crystals with line-defect under transverse magnetic mode," Acta Phys. Sin., Vol. 60, 025215, 2011.

25. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and X. Zhao, "Properties of omnidirectional photonic band gaps in ¯bonacci quasi-periodic one-dimensional superconductor photonic crystals," Progress In Electromagnetics Research B, Vol. 40, 415-437, 2012.

26. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and Y. Dai, "Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals," Solid State Commun., Vol. 152, 2113-2119, 2012.

27. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and B. Ma, "Enhancement of omnidirectional photonic bandgaps in one-dimensional superconductor --- Dielectric photonic crystals with a staggered structure," J. Supercond. Nov. Magn., Vol. 26, 77-85, 2013.

28. Kamp, M., T. Happ, S. Mahnkopf, G. Duan, S. Anand, and A. Forchel, "Semiconductor photonic crystals for optoelectronics," Physica E, Vol. 21, 802-808, 2004.

29. Moroz, A., "Three-dimensional complete photonic bandgap structures in the visible," Phys. Rev. Lett., Vol. 83, 5274-5277, 1999.

30. Kockaert, P., P. Tassin, I. Veretennicoff, G. V. D. Sande, and M. Tlidi, "Beyond the zero-diffraction regime in optical cavities with a left-handed material," J. Opt. Soc. Am. B, Vol. 26, B148-B155, 2009.

31. Krumbholz, N., K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kurner, and D. Mittleman, "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett., Vol. 88, 202905, 2006.

32. Kim, K., "Polarization-dependent waveguide coupling utilizing single-negative materials," IEEE Photonics Technol. Lett., Vol. 17, 369-371, 2005.

33. Hsueh, W. J., C. T. Chen, and C. H. Chen, "Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism," Phys. Rev. A, Vol. 78, 013836, 2008.

34. Wang, Z., C. T. Chan, W. Zhang, N. Ming, and P. Sheng, "Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency," Phys. Rev. B, Vol. 64, 113108, 2001.

35. Chan, C. T., W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, and P. Sheng, "Photonicband gaps from metallo-dielectric spheres," Physica B, Vol. 279, 150-154, 2000.

36. Zhang, W. Y., X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, "Robust photonic band gap from tunable scatterers," Phys. Rev. Lett., Vol. 84, 2853, 2000.

37. Zhang, H. F., S. B. Liu, and B. X. Li, "The properties of photonic band gaps for three-dimensional tunable photonic crystals with simple-cubic lattices doped by magnetized plasma," Optics & Laser Technology, Vol. 50, 93-102, 2013.

38. Zhang, H. F., S. B. Liu, X. K. Kong, and B. R. Bian, "The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice," Optic Commun., Vol. 288, 82-90, 2013.

39. Zhang, H. F., S. B. Liu, and X. K. Kong, "Analysis of Voigt effects in dispersive properties for tunable three-dimensional face-centered-cubic magnetized plasma photonic crystals," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 10, 1276-1292, 2013.

40. Zhang, H. F., S. B. Liu, and X. K. Kong, "Investigating the dispersive properties of the three-dimensional photonic crystals with face-centered-cubic lattices containing epsilon-negative materials," Applied Physics B, Vol. 112, 553-563, 2013.

41. Zhang, H. F., S. B. Liu, and X. K. Kong, "Properties of anisotropic photonic band gaps in three-dimensional plasma photonic crystals containing the uniaxial material with di®erent lattices," Progress In Electromagnetics Research, Vol. 141, 267-289, 2013.

42. Zhang, H. F., S. B. Liu, and X. K. Kong, "Investigation of Faraday effects in photonic band gap for tunable three-dimensional magnetized plasma photonic crystals containing the anisotropic material in diamond arrangement," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 14, 1776-1791, 2013.

43. Zhang, H. F., S. B. Liu, and X. K. Kong, "Dispersion properties of three-dimensional plasma photonic crystals in diamond lattice arrangement," J. Lightwave Technol., Vol. 17, 1694-1702, 2013.

44. Li, Z. Y., J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap strucutres," Phys. Rev. B, Vol. 58, 3721-3729, 1998.

45. Malkova, N., S. Kim, T. Dilazaro, and V. Gopalan, "Symmetrical analysis of complex two-dimensional hexagonal photonic crystals," Phys. Rev. B, Vol. 67, 125203-1-125203-6, 2003.

46. Garcia-Adeva, A. J., "Band structure of photonic crystals with the symmetry of a pyrochlore lattice," Phys. Rev. B, Vol. 73, 073107-1-073107-6, 2006.

47. Garcia-Adeva, A. J., "Band gap atlas for photonic crystals having the symmetry of the kagome and pyrochlore lattices," New J. Phys., Vol. 8, 86-1-86-16, 2006.

48. Garcia-Adeva, A. J., R. Balda, and J. Fernandez, "The density of electromagnetic modes in photonic crystals based on the pyrochlore and kagome lattices," Optic. Material, Vol. 27, 1733-1742, 2005.

49. Lou, M., Q. H. Liu, and Z. Li, "Spectral element method for band structures of three-dimensional anisotropic photonic crystals," Phys. Rev. E, Vol. 80, 056702, 2012.

50. Marrone, M., V. F. Rodriguez-Esquerre, and H. E. Hernandez-Figueroa, "Novel numerical method for the analysis of 2-D photonic crystals: The cell method," Opt. Exp., Vol. 10, 1299-1304, 2002.

51. Jun, S., Y. S. Cho, and S. Im, "Moving least-square method for the band-structure calculation of 2D photonic crystals," Opt. Exp., Vol. 11, 541-551, 2003.

52. Zhang, H. F., S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bian, "Comment on `Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave'," J. Appl. Phys., Vol. 101, 073304, 2007; J. Appl. Phys., Vol. 110, 026104, 2011.

53. Kuzmiak, V. and A. A. Maradudin, "Photonic band structure of one-and two-dimensional periodic systems withmetallic components in the presence of dissipation," Phy. Rev. B, Vol. 55, 7427-7444, 1997.

54. Cassagne, D., C. Jouanin, and D. Bertho, "Hexagonal photonic-band-gap structures," Phys. Rev. B, Vol. 53, 7134-7142, 1996.

55. Chern, R., C. C. Chang, and C. C. Chang, "Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions," Phys. Rev. E, Vol. 73, 036605-1-036605-16, 2006.

56. Zhang, H. F., S. B. Liu, and X. K. Kong, "Study of the dispersive properties of three-dimensional photonic crystals with diamond lattices containing metamaterials," Laser Phys., Vol. 23, 105815-1-105815-9, 2013.

57. Zhang, H. F., S. B. Liu, and X. K. Kong, "The properties of photonic band gaps for three-dimensional plasma photonic crystals in a diamond structure," Phys. Plasmas, Vol. 20, 042110-1-042110-1, 2013.