Vol. 61
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-09-22
Threat Target Classification Using ANN and SVM Based on a New Sensor Array System
By
Progress In Electromagnetics Research B, Vol. 61, 69-85, 2014
Abstract
Electromagnetic imaging is based upon the fundamentals of electromagnetic (EM) fields and their relationship with the material properties under evaluation. A new system based on a Giant Magneto-Resistive (GMR) sensor array was built to capture the scattered EM signal returned by metallic objects. This paper evaluates the new system's capabilities through the classification of metallic objects based on features extracted from their response to EM fields. A novel amplitude variation feature as well as the combinations of typical features is proposed to obtain high classification rates. The selected features of metallic objects are then applied to well-known supervisedclassifiers (ANN and SVM) to detect and classify `threat' items. A collection of handguns with other commonly used metallic objects are tested. Promising results show that a high classification rate is achieved using the proposed new combination features and classification framework. This novel procedure has the potential to produce significant improvements in automatic weapon detection and classification.
Citation
Abdalrahman R. Al-Qubaa, Abeer Al-Shiha, and Gui Yun Tian, "Threat Target Classification Using ANN and SVM Based on a New Sensor Array System," Progress In Electromagnetics Research B, Vol. 61, 69-85, 2014.
doi:10.2528/PIERB14050704
References

1. Agurto, A., Y. Li, G. Y. Tian, N. Bowring, and S. Lockwood, "A review of concealed weapon detection and research in perspective," Proceedings of the 2007 IEEE International Conference on Networking, Sensing and Control, 443-448, 2007.
doi:10.1109/ICNSC.2007.372819        Google Scholar

2. Zhuge, X. and A. G. Yarovoy, "A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, 509-518, 2011.
doi:10.1109/TGRS.2010.2053038        Google Scholar

3. Kapilevich, B. and M. Einat, "Detecting hidden objects on human body using active millimeter wave sensor," IEEE Sensors Journal, Vol. 10, 1746-1652, 2010.
doi:10.1109/JSEN.2010.2049350        Google Scholar

4. Cooper, K. B., R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, "THz imaging radar for standoff personnel screening," IEEE Transactions on Terahertz Science and Technology, Vol. 1, 169-182, 2011.
doi:10.1109/TTHZ.2011.2159556        Google Scholar

5. Dale, K. K., G. R. Lyle, and E. P. Robert, "Detection and classification of concealed weapons using a magnetometer-based portal," Proc. SPIE, Sensors and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Defense and Law Enforcement, 145-155, 2002.        Google Scholar

6. Nelson, C. V., "Metal detection and classification technologies," Johns Hopkins APL Technical Digest, Vol. 24, 62-66, 2004.        Google Scholar

7. Singh, S. and M. Singh, "Explosives detection systems (EDS) for aviation security," An International Journal on Signal Processing, Vol. 83, 31-55, 2003.
doi:10.1016/S0165-1684(02)00391-2        Google Scholar

8. Paulter, N. G, "Guide to the technologies of concealed weapon and contraband imaging and detection,", NIJ Guide 602-002001, 2001.        Google Scholar

9. Chen, H.-M., S. Lee, R. M. Rao, M. A. Slamani, and P. K. Varshney, "Imaging for concealed weapon detection: A tutorial overview of development in imaging sensors and processing," IEEE Signal Processing Magazine, Vol. 22, 52-61, 2005.
doi:10.1109/MSP.2005.1406480        Google Scholar

10. Yin, W., G. Chen, L. Chen, and B. Wang, "The design of a digital magnetic induction tomography (MIT) system for metallic object imaging based on half cycle demodulation," IEEE Sensors Journal, Vol. 11, 2233-2233, 2011.
doi:10.1109/JSEN.2011.2128866        Google Scholar

11. Tran, M. D. J., C. P. Lim, C. Abeynayake, and L. C. Jain, "Feature extraction and classification of metal detector signals using the wavelet transform and the fuzzy ARTMAP neural network," Journal of Intelligent and Fuzzy Systems, Vol. 21, 89-99, 2010.        Google Scholar

12. Gonzalez, R. C., Digital Image Processing, 2nd Ed., Prentice-Hall Inc., 2003.

13. Kruger, H. and H. Ewald, "Signal processing and pattern recognition for eddy current sensors, used for effective land-mine detection," Autonomous and Intelligent Systems, Vol. 6752, 294-302, 2011.
doi:10.1007/978-3-642-21538-4_29        Google Scholar

14. Xi, M., M. R. Azimi-Sadjadi, T. Bin, A. C. Dubey, and N. H. Witherspoon, "Detection of mines and minelike targets using principal component and neural-network methods," IEEE Transactions on Neural Networks, Vol. 9, 454-463, 1998.
doi:10.1109/72.668887        Google Scholar

15. Fernandez, J., B. Barrowes, K. O’Neill, K. Paulsen, I. Shamatava, F. Shubitidze, and K. Sun, "Evaluation of SVM classification of metallic objects based on a magneticdipole representation," Detection and Remediation Technologies for Mines and Minelike Targets XI, Vol. 621703, 2006.        Google Scholar

16. Figuera, C., J. L. Rojo-Alvarez, M. Wilby, I. Mora-Jimenez, and A. J. Caamano, "Advanced support vector machines for 802.11 indoor location," An International Journal on Signal Processing, Vol. 92, 2126-2136, 2012.
doi:10.1016/j.sigpro.2012.01.026        Google Scholar

17. Al-Qubaa, A. R. and G. Y. Tian, "Automatic threat object classification based on extracted features from electromagnetic imaging system," 2012 IEEE International Conference on Imaging Systems and Techniques (IST), 164-169, 2012.
doi:10.1109/IST.2012.6295536        Google Scholar

18. Al-Qubaa, A., G. Y. Tian, and J. Wilson, "Electromagnetic imaging system for weapon detection and classification," Fifth International Conference on Sensor Technologies and Applications, 317-321, France, 2011.        Google Scholar

19. Flusser, J., T. Suk, and B. Zitova, Moments and Moment Invariants in Pattern Recognition, John Wiley & Sons, 2009.
doi:10.1002/9780470684757

20. Air Force Research Laboratory, , Final technical report: Sensor fusion algorithms and performance limits, Available: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA391935, 2011.

21. Hendrik, K. and E. Hartmut, "Signal processing and pattern recognition for eddy current sensors, used for effective land-mine detection," Proceedings of the Second International Conference on Autonomous and Intelligent Systems, Vol. 294, No. 302, Burnaby, BC, Canada, 2011.        Google Scholar

22. Sophian, A., G. Y. Tian, D. Taylor, and J. Rudlin, "A feature extraction technique based on principal component analysis for pulsed Eddy current NDT," NDT and E International, Vol. 36, 37-41, 2003.
doi:10.1016/S0963-8695(02)00069-5        Google Scholar

23. Turhan-Sayan, G., "Real time electromagnetic target classification using a novel feature extraction technique with PCA-based fusion," IEEE Transactions on Antennas and Propagation, Vol. 53, 766-776, 2005.
doi:10.1109/TAP.2004.841326        Google Scholar

24. Li, Y., G. Y. Tian, N. J. Bowring, and N. Rezgui, "A microwave measurement system for metallic object detection using swept frequency radar," Proc. SPIE, 13 pages, 2008.        Google Scholar

25. Al-Qubaa, A. R., G. Y. Tian, J. Wilson, W. L. Woo, and S. Dlay, "Feature extraction using normalized cross-correlation for pulsed eddy current thermographic images," Measurement Science and Technology, Vol. 21, 115501-115511, 2010.
doi:10.1088/0957-0233/21/11/115501        Google Scholar

26. Tian, G. Y., A. Al-Qubaa, and J.Wilson, "Design of an electromagnetic imaging system for weapon detection based on GMR sensor arrays," Sensors and Actuators A: Physical, Vol. 174, 75-84, 2012.
doi:10.1016/j.sna.2011.11.034        Google Scholar

27. Al-Qubaa, A. and G. Y. Tian, "Weapon detection and classification based on time-frequency analysis of electromagnetic transient images," International Journal on Advances in Systems and Measurements, Vol. 5, 89-99, 2012.        Google Scholar

28. Nixon, M. and A. S. Aguado, Feature Extraction & Image Processing, 2nd Ed., Elsevier Ltd., 2008.

29. Rizon, M., H. Yazid, P. Saad, A. Shakaff, A. Saad, M. Mamat, S. Yaacob, H. Desa, and M. Karthigayan, "Object detection using geometric invariant moment," American Journal of Applied Sciences, Vol. 2, 1876-1878, 2006.        Google Scholar

30. Pourghassem, H., O. Sharifi-Tehrani, and M. Nejati, "A novel weapon detection algorithm in Xray dual-energy images based on connected component analysis and shape features," Australian Journal of Basic and Applied Sciences, Vol. 5, 300-307, 2011.        Google Scholar

31. Hausner, J., "A radar-based concealed threat detector," Microwave Journal, Vol. 50, 26-40, 2007.        Google Scholar

32. Chang, C. C. and C. J. Lin, "LIBSVM: A library for support vector machines," ACM Transactions on Intelligent Systems and Technology, Vol. 2, 2011.        Google Scholar

33. Arora, S., D. Bhattacharjee, M. Nasipuri, L. Malik, M. Kundu, and D. K. Basu, "Performance comparison of SVM and ANN for handwritten devnagari character recognition," IJCSI International Journal of Computer Science Issues, Vol. 7, 1-10, 2010.        Google Scholar

34. Al-Qubaa, A., "An electromagnetic imaging system for metallic object detection and classification,", Ph.D. Thesis, Newcastle University, UK, 2013.        Google Scholar