Vol. 61
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-09-04
CPML and Quasi-CPML for Cylindrical MRTD Method
By
Progress In Electromagnetics Research B, Vol. 61, 17-30, 2014
Abstract
Two absorbing boundary conditions (ABC's) are derived for the cylindrical MRTD grids. The first one is the convolutional perfectly matched layer (CPML) based on stretched coordinates with complex frequency shifted constitutive parameters, and the other is the straightforward extension of CPML named quasi-CPML (QCPML) as it is no longer perfectly matched for cylindrical interfaces. Unlike the Berenger's PML, the implementations of the two ABC's are completely independent of the host material. Numerical results show that both ABC's can provide a quite satisfactory absorbing boundary condition, and can save more CPU time and memory than the Berenger's PML, while the QCPML has an advantage of CPML at the proposed absorbing performance, CPU time and memory saving. Moreover, it is shown that the QCPML is more effective than the PML and CPML at absorbing evanescent waves.
Citation
Pin Zhang, Yawen Liu, Shi Qiu, and Bo Yang, "CPML and Quasi-CPML for Cylindrical MRTD Method," Progress In Electromagnetics Research B, Vol. 61, 17-30, 2014.
doi:10.2528/PIERB14071002
References

1. Krumpholz, M. and L. P. B. Katehi, "New prospects for time domain analysis," IEEE Microwave Guided Wave Lett., Vol. 5, No. 11, 382-384, December 1995.
doi:10.1109/75.473535        Google Scholar

2. Krumpholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 4, 555-561, April 1996.
doi:10.1109/22.491023        Google Scholar

3. Pan, G., M. V. Toupikov, and B. K. Gilbert, "On the use of Coifman intervallic wavelets in the method of moments for fast construction of wavelets sparsified matrices," IEEE Trans. Antennas Propagat., Vol. 47, No. 7, 1189-1200, July 1999.        Google Scholar

4. Cheong, Y. W., Y. M. Lee, K. H. Ra, J. G. Kang, and C. C. Shin, "Wavelet-Galerkin scheme of time-dependent inhomogeneous electromagnetic problems," IEEE Microwave Guided Wave Lett., Vol. 9, No. 8, 297-299, August 1999.
doi:10.1109/75.779907        Google Scholar

5. Grivet-Talocia, S., "On the accuracy of Haar-based multiresolution time-domain schemes," IEEE Microwave Wave Lett., Vol. 10, No. 10, 397-399, October 2000.
doi:10.1109/75.877224        Google Scholar

6. Dogaru, T. and L. Carin, "Multiresolution time-domain using CDF biorthogonal wavelets," IEEE Trans. Antennas Propagat., Vol. 49, No. 5, 902-912, May 2001.        Google Scholar

7. Fujii, M. and W J. R. Hoefer, "Dispersion of time domain wavelet Galerkin method based on Daubechies’ compactly supported scaling functions with three and four vanishing moments," IEEE Microwave Guided Wave Lett., Vol. 10, No. 4, 125-127, April 2000.
doi:10.1109/75.846920        Google Scholar

8. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702        Google Scholar

9. Mao, Y., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures," Progress In Electromagnetics Research, Vol. 128, 153-170, 2012.
doi:10.2528/PIER12032306        Google Scholar

10. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditionally stable FDTD algorithm," Progress In Electromagnetics Research, Vol. 130, 525-540, 2012.
doi:10.2528/PIER12071904        Google Scholar

11. Xiong, R., B. Chen, Y. Mao, B. Li, and Q.-F. Jing, "A simple local approximation FDTD model of short apertures with a finite thickness," Progress In Electromagnetics Research, Vol. 131, 135-152, 2012.
doi:10.2528/PIER12072201        Google Scholar

12. Xiong, R., B. Chen, J.-J. Han, Y.-Y. Qiu, W. Yang, and Q. Ning, "Transient resistance analysis of large grounding systems using the FDTD method," Progress In Electromagnetics Research, Vol. 132, 159-175, 2012.
doi:10.2528/PIER12082601        Google Scholar

13. Gradoni, G., V. Mariani Primiani, and F. Moglie, "Reverberation chamber as a multivariate process: FDTD evaluation of correlation matrix and independent positions," Progress In Electromagnetics Research, Vol. 133, 217-234, 2013.
doi:10.2528/PIER12091807        Google Scholar

14. Kong, Y.-D., Q.-X. Chu, and R.-L. Li, "High-order unconditionally-stable four-step adi-FDTD methods and numerical analysis," Progress In Electromagnetics Research, Vol. 135, 713-734, 2013.
doi:10.2528/PIER12102205        Google Scholar

15. Chun, K., H. Kim, H. Kim, and Y. Chung, "PLRC and ADE implementations of Drude-critical point dispersive model for the FDTD method," Progress In Electromagnetics Research, Vol. 135, 373-390, 2013.
doi:10.2528/PIER12112207        Google Scholar

16. Liu, Y., Y. Chen, B. Chen, and X. Xu, "A cylindrical MRTD algorithm with PML and quasi-PML," IEEE Trans. Microwave Theory Tech., Vol. 61, No. 3, 1006-1017, March 2013.
doi:10.1109/TMTT.2013.2243745        Google Scholar

17. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Opt. Technol. Lett., Vol. 27, No. 5, 334-339, December 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A        Google Scholar

18. Abarbanel, S., D. Gottlieb, and J. S. Hesthaven, "Long time behavior of the perfectly matched layer equations in computational electromagnetics," Journal of Scientific Computing, Vol. 17, No. 1-4, 405-422, 2002.
doi:10.1023/A:1015141823608        Google Scholar

19. Sweldens, W. and R. Piessens, "Wavelet sampling techniques," Proc. Statistical Computing Section, 20-29, 1993.        Google Scholar

20. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 195-200, 1994.
doi:10.1006/jcph.1994.1159        Google Scholar

21. Teixeira, F. L. and W. C. Chew, "PML-FDTD in cylindrical and spherical grids," IEEE Microwave Guided Wave Lett., Vol. 7, No. 9, 285-287, September 1997.
doi:10.1109/75.622542        Google Scholar

22. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Microwave Opt. Technol. Lett., Vol. 7, No. 7, 599-604, September 1994.
doi:10.1002/mop.4650071304        Google Scholar

23. Gedney, S. D. and The perfectly matched layer absorbing medium, Advances in Computational Electrodynamics: The Finite Difference Time Domain, A. Taflove (ed.), 263-340, Artech House, Boston, MA, 1998.        Google Scholar