1. Krumpholz, M. and L. P. B. Katehi, "New prospects for time domain analysis," IEEE Microwave Guided Wave Lett., Vol. 5, No. 11, 382-384, December 1995.
doi:10.1109/75.473535 Google Scholar
2. Krumpholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 4, 555-561, April 1996.
doi:10.1109/22.491023 Google Scholar
3. Pan, G., M. V. Toupikov, and B. K. Gilbert, "On the use of Coifman intervallic wavelets in the method of moments for fast construction of wavelets sparsified matrices," IEEE Trans. Antennas Propagat., Vol. 47, No. 7, 1189-1200, July 1999. Google Scholar
4. Cheong, Y. W., Y. M. Lee, K. H. Ra, J. G. Kang, and C. C. Shin, "Wavelet-Galerkin scheme of time-dependent inhomogeneous electromagnetic problems," IEEE Microwave Guided Wave Lett., Vol. 9, No. 8, 297-299, August 1999.
doi:10.1109/75.779907 Google Scholar
5. Grivet-Talocia, S., "On the accuracy of Haar-based multiresolution time-domain schemes," IEEE Microwave Wave Lett., Vol. 10, No. 10, 397-399, October 2000.
doi:10.1109/75.877224 Google Scholar
6. Dogaru, T. and L. Carin, "Multiresolution time-domain using CDF biorthogonal wavelets," IEEE Trans. Antennas Propagat., Vol. 49, No. 5, 902-912, May 2001. Google Scholar
7. Fujii, M. and W J. R. Hoefer, "Dispersion of time domain wavelet Galerkin method based on Daubechies’ compactly supported scaling functions with three and four vanishing moments," IEEE Microwave Guided Wave Lett., Vol. 10, No. 4, 125-127, April 2000.
doi:10.1109/75.846920 Google Scholar
8. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702 Google Scholar
9. Mao, Y., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures," Progress In Electromagnetics Research, Vol. 128, 153-170, 2012.
doi:10.2528/PIER12032306 Google Scholar
10. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditionally stable FDTD algorithm," Progress In Electromagnetics Research, Vol. 130, 525-540, 2012.
doi:10.2528/PIER12071904 Google Scholar
11. Xiong, R., B. Chen, Y. Mao, B. Li, and Q.-F. Jing, "A simple local approximation FDTD model of short apertures with a finite thickness," Progress In Electromagnetics Research, Vol. 131, 135-152, 2012.
doi:10.2528/PIER12072201 Google Scholar
12. Xiong, R., B. Chen, J.-J. Han, Y.-Y. Qiu, W. Yang, and Q. Ning, "Transient resistance analysis of large grounding systems using the FDTD method," Progress In Electromagnetics Research, Vol. 132, 159-175, 2012.
doi:10.2528/PIER12082601 Google Scholar
13. Gradoni, G., V. Mariani Primiani, and F. Moglie, "Reverberation chamber as a multivariate process: FDTD evaluation of correlation matrix and independent positions," Progress In Electromagnetics Research, Vol. 133, 217-234, 2013.
doi:10.2528/PIER12091807 Google Scholar
14. Kong, Y.-D., Q.-X. Chu, and R.-L. Li, "High-order unconditionally-stable four-step adi-FDTD methods and numerical analysis," Progress In Electromagnetics Research, Vol. 135, 713-734, 2013.
doi:10.2528/PIER12102205 Google Scholar
15. Chun, K., H. Kim, H. Kim, and Y. Chung, "PLRC and ADE implementations of Drude-critical point dispersive model for the FDTD method," Progress In Electromagnetics Research, Vol. 135, 373-390, 2013.
doi:10.2528/PIER12112207 Google Scholar
16. Liu, Y., Y. Chen, B. Chen, and X. Xu, "A cylindrical MRTD algorithm with PML and quasi-PML," IEEE Trans. Microwave Theory Tech., Vol. 61, No. 3, 1006-1017, March 2013.
doi:10.1109/TMTT.2013.2243745 Google Scholar
17. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Opt. Technol. Lett., Vol. 27, No. 5, 334-339, December 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A Google Scholar
18. Abarbanel, S., D. Gottlieb, and J. S. Hesthaven, "Long time behavior of the perfectly matched layer equations in computational electromagnetics," Journal of Scientific Computing, Vol. 17, No. 1-4, 405-422, 2002.
doi:10.1023/A:1015141823608 Google Scholar
19. Sweldens, W. and R. Piessens, "Wavelet sampling techniques," Proc. Statistical Computing Section, 20-29, 1993. Google Scholar
20. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 195-200, 1994.
doi:10.1006/jcph.1994.1159 Google Scholar
21. Teixeira, F. L. and W. C. Chew, "PML-FDTD in cylindrical and spherical grids," IEEE Microwave Guided Wave Lett., Vol. 7, No. 9, 285-287, September 1997.
doi:10.1109/75.622542 Google Scholar
22. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Microwave Opt. Technol. Lett., Vol. 7, No. 7, 599-604, September 1994.
doi:10.1002/mop.4650071304 Google Scholar
23. Gedney, S. D. and The perfectly matched layer absorbing medium, Advances in Computational Electrodynamics: The Finite Difference Time Domain, A. Taflove (ed.), 263-340, Artech House, Boston, MA, 1998. Google Scholar