Vol. 61
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-12-01
Amplitude-Aided Cphd Filter for Multitarget Tracking in Infrared Images
By
Progress In Electromagnetics Research B, Vol. 61, 211-224, 2014
Abstract
The cardinalized probability hypothesis density (CPHD) filter is a powerful tool for multitarget tracking (MTT). However, conventional CPHD filter discriminates targets from clutter only via the motion information, which is not reasonable in the situation of dense clutter. In the tracking, the amplitude of target returns is usually stronger than those coming from clutter, so the amplitude information can be used to enhance the discrimination between targets and clutter. Based on this idea, this paper proposes an amplitude-aided CPHD filter for the MTT in distant infrared (IR) surveillance. First, we model the amplitude of targets and clutter in IR scenarios respectively. For distant IR scenarios, the point spread function (PSF) is used to model the imaging of the point target. The center intensity of the PSF is unknown in practice, and the maximum likelihood estimation (MLE) method is adopted to estimate the target center intensity via the intensities of the latest target detections. Then a likelihood function for MTT is established, and using this likelihood function, a new CPHD recursion is derived, which can distinguish different targets and clutter by the correspondence weight. In the implementation, we adopt the Gaussian mixture (GM) approach to implement the amplitude-aided CPHD filter to achieve efficient performance. In numerical experiments, the results show that the proposed method attains a significant improvement in performance over that only using location measurements.
Citation
Changzhen Qiu, Zhiyong Zhang, Huanzhang Lu, and Yabei Wu, "Amplitude-Aided Cphd Filter for Multitarget Tracking in Infrared Images," Progress In Electromagnetics Research B, Vol. 61, 211-224, 2014.
doi:10.2528/PIERB14092101
References

1. De Visser, M., P. B. W. Schwering, J. F. de Groot, and E. A. Hendriks, "Passive ranging using an infrared search and track sensor," Opt. Eng., Vol. 45, No. 2, 26402-1-26402-14, 2006.        Google Scholar

2. Lampropoulos, G. A. and J. F. Boulter, "Filtering of moving targets using SBIR sequential frames," IEEE Trans. Aerosp. Electron. Sys., Vol. 31, No. 4, 1255-1267, 1995.
doi:10.1109/7.464349        Google Scholar

3. Ender, T., R. F. Leurck, B. Weaver, et al. "Systems-of-systems analysis of ballistic missile defense architecture effectiveness through surrogate modeling and simulation," IEEE Systems Journal, Vol. 4, No. 2, 156-166, 2010.
doi:10.1109/JSYST.2010.2045541        Google Scholar

4. Vo, B.-N., B.-T. Vo, N.-T. Pham, and D. Suter, "Joint detection and estimation of multiple objects from image observations," IEEE Trans. Signal Process., Vol. 58, No. 10, 5129-5141, 2010.
doi:10.1109/TSP.2010.2050482        Google Scholar

5. Streit, R. L., M. L. Graham, and M. J. Walsh, "Multitarget tracking of distributed targets using histogram-PMHT," Digital Signal Process., Vol. 12, No. 2–3, 394-404, 2002.
doi:10.1006/dspr.2002.0440        Google Scholar

6. Fortmann, T., Y. Bar-Shalom, and M. Scheffe, "Sonar tracking of multiple targets using joint probabilistic data association," IEEE J. Ocean. Eng., Vol. 8, No. 3, 173-184, 1983.
doi:10.1109/JOE.1983.1145560        Google Scholar

7. Pulford, G. W., "Taxonomy of multiple target tracking methods," IEE Radar, Sonar and Navigation, Vol. 152, No. 5, 291-304, 2005.
doi:10.1049/ip-rsn:20045064        Google Scholar

8. Zaveri, M. A., S. N. Merchant, and U. B. Desai, "Genetic IMM-NN based tracking of multiple point targets in infrared image sequence," Lecture Notes in Computer Science, Vol. 3285, 17-25, 2004.
doi:10.1007/978-3-540-30176-9_3        Google Scholar

9. Zaveri, M. A., S. N. Merchant, and U. B. Desai, "Robust neural-network-based data association and multiple model-based tracking of multiple point targets," IEEE Trans. on Syst., Man, and Cybernetics — Part C: Applications and Reviews, Vol. 37, No. 3, 337-351, 2007.
doi:10.1109/TSMCC.2007.893281        Google Scholar

10. Song, T. L., D. Musicki, H. H. Lee, and X. Wang, "Point target probabilistic multiple hypothesis tracking," IET Radar Sonar Navig., Vol. 5, 632-637, 2011.
doi:10.1049/iet-rsn.2010.0260        Google Scholar

11. Zaveri, M. A., S. N. Merchant, and U. B. Desai, "Multiple model based point targets tracking using particle filtering in infrared image sequence," Opt. Eng., Vol. 45, No. 5, 184-189, 2004.        Google Scholar

12. Zaveri, , M. A., S. N. Merchant, and U. B. Desai, "Tracking of point targets in IR image sequence using multiple model based particle filtering and MRF data association," Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04), Vol. 4, 729-732, 2004.
doi:10.1109/ICPR.2004.1333876        Google Scholar

13. Mahler, R. P. S., "Multi-target bayes filtering via first-order multi-target moments," IEEE Trans. Aerosp. Electron. Sys., Vol. 39, No. 4, 1152-1178, 2003.
doi:10.1109/TAES.2003.1261119        Google Scholar

14. Mahler, R. P. S., "PHD filters of higher order in target number," IEEE Trans. Aerosp. Electron. Sys., Vol. 43, No. 3, 1523-1543, 2007.
doi:10.1109/TAES.2007.4441756        Google Scholar

15. Vo, B.-T., B.-N. Vo, and A. Cantoni, "Analytic implementations of the cardinalized probability hypothesis density filtering," IEEE Trans. Signal Process., Vol. 55, No. 7, 3553-3567, 2007.
doi:10.1109/TSP.2007.894241        Google Scholar

16. Mahler, R., Statistical Multisource-multitarget Information Fusion, Artech House, Norwood, MA, 2007.

17. Vo, B.-T., B.-N. Vo, and A. Cantoni, "The cardinality balanced multitarget multi-bernoulli filter and its implementations," IEEE Trans. Signal Process., Vol. 57, No. 2, 409-423, 2009.
doi:10.1109/TSP.2008.2007924        Google Scholar

18. Lerro, D. and Y. Bar-Shalom, "Interacting multiple model tracking with target amplitude feature," IEEE Trans. Aerosp. Electron. Sys., Vol. 29, No. 2, 494-508, 1993.
doi:10.1109/7.210086        Google Scholar

19. Brekke, E., O. Hallingstad, and J. Glattetre, "Tracking small targets in heavy-tailed clutter using amplitude information," IEEE J. Ocean. Eng., Vol. 35, No. 2, 314-329, 2010.
doi:10.1109/JOE.2010.2044670        Google Scholar

20. Brekke, E., O. Hallingstad, and J. Glattetre, "The modified riccati equation for amplitude-aided target tracking in heavy-tailed clutter," IEEE Trans. Aerosp. Electron. Sys., Vol. 47, No. 4, 2874-2886, 2011.
doi:10.1109/TAES.2011.6034670        Google Scholar

21. Van Keuk, G., "Multi-hypothesis tracking using incoherent signal-strength information," IEEE Trans. Aerosp. Electron. Sys., Vol. 32, No. 3, 1164-1170, 1996.
doi:10.1109/7.532278        Google Scholar

22. Xu, Y., H. Xu, W. An, and D. Xu, "FISST based method for multi-target tracking in the image plane of optical sensors," Sensors, Vol. 12, 2920-2934, 2012.
doi:10.3390/s120302920        Google Scholar

23. Clark, D., B. Ristic, B. Vo, et al. "Bayesian multi-object filtering with amplitude feature likelihood for unknown object SNR," IEEE Trans. Signal Process., Vol. 58, No. 1, 26-37, 2010.
doi:10.1109/TSP.2009.2030640        Google Scholar

24. Gunapala, S. D., S. V. Bandara, et al. "Demonstration of megapixel dual-band QWIP focal plane array," IEEE J. Quantum Elect., Vol. 46, No. 2, 285-293, 2010.
doi:10.1109/JQE.2009.2024550        Google Scholar

25. Price, S., W. Ritchie, E. Schulte, R. Wyles, et al. "Staring 256 × 256 LWIR focal plane array performance of the Raytheon exoatmospheric kill vehicle," ADA Report, 1998.        Google Scholar

26. Chan, D. S. K., D. A. Langan, and D. A. Staver, "Spatial processing techniques for the detection of small targets in IR clutter," Proc. SPIE, Vol. 1305, 53-62, 1990.
doi:10.1117/12.21579        Google Scholar

27. Gascon, F., J.-P. Gastellu-Etchegorry, and M.-J. Lefevre, "Radiative transfer model for simulating high-resolution satellite images," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 9, 1922-1926, 2001.
doi:10.1109/36.951083        Google Scholar

28. Zhao, F., H. Lu, and Z. Zhang, "Real-time single pass connected components analysis algorithm," EURASIP Journal on Image and Video Processing, Vol. 2013, No. 1, 1-10, 2013.
doi:10.1186/1687-5281-2013-21        Google Scholar

29. Kay, S. M., Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory, Prentice Hall, PTR Upper Saddle River, New Jersey , 1993.

30. Mahler, R. P. S., "Multi-target Bayes filtering via first-order multi-target moments," IEEE Trans. Aerosp. Electron. Sys., Vol. 39, No. 4, 1152-1178, 2003.
doi:10.1109/TAES.2003.1261119        Google Scholar

31. Mahler, R. P. S., "PHD filters of higher order in target number," IEEE Trans. Aerosp. Electron. Sys., Vol. 43, No. 3, 1523-1543, 2007.
doi:10.1109/TAES.2007.4441756        Google Scholar

32. Mahler, R. P. S., Statistical Multisource Multitarget Information Fusion, Artech House, Norwood, MA, 2007.

33. Vo, B.-N. and W.-K. Ma, "The Gaussian mixture probability hypothesis density filtering," IEEE Trans. Signal Process., Vol. 54, No. 11, 4091-4104, 2006.
doi:10.1109/TSP.2006.881190        Google Scholar

34. Ristic, B., B.-N. Vo, D. Clark, and B.-T. Vo, "A metric for performance evaluation of multitarget tracking algorithms," IEEE Transactions on Signal Processing, Vol. 59, No. 7, 3452-3457, 2011.
doi:10.1109/TSP.2011.2140111        Google Scholar