1. Hislop, G., "Measuring the thickness, permittivity and conductivity of layered earth," 8th European Conference on Antennas and Propagation (EuCAP), 3578-3581, The Hague, The Netherlands, 2014.
2. Van Rossum, W., F. Nennie, D. Deiana, A. J. van der Veen, and S. Monni, "Dielectric characterisation of human tissue samples," 8th European Conference on Antennas and Propagation (EuCAP), 524-528, The Hague, The Netherlands, 2014.
3. Garnier, J., "Wave propagation in one-dimensional random media," Panoramas et Synth’eses, Vol. 12, 101-138, 2001.
4. Klyatskin, V. I. and V. I. Tatarskii, "Statistical theory of wave propagation through random layered media,", Institute of Atmospheric Physics, Academy of Sciences of the USSR, (Translated from Izvestiya Vysshikha Uchebnykh Zavedenii, Radiofizika), Vol. 20, No. 7, 1040-1053, 1977 (original document sumitted 1976).
5. Ishimaru, A., "Wave propagation and scattering in random media and rough surfaces," Proceedings of the IEEE, Vol. 79, No. 10, 1359-1366, Oct. 1991.
doi:10.1109/5.104210
6. Metropolis, N. and S. Ulam, "The Monte Carlo method," Journal of the American Statistical Association, Vol. 44, No. 247, 335-341, 1949.
doi:10.1080/01621459.1949.10483310
7. Eckhardt, R., "Stan Ulam, John Neumann, and the Monte Carlo method," Los Alamos Science, Special Issue, Vol. 15, 131-137, 1987.
8. Tatarski, V. I., Wave Propagation in a Turbulent Medium, McGraw-Hill Book Company, INC, New York, 1961.
9. Blaunstein, N., "Theoretical aspects of wave propagation in random media based on quanty and statistical field theory," Progress In Electromagnetics Research, Vol. 47, 135-191, 2004.
doi:10.2528/PIER03111702
10. Jaynes, E. T., "Information theory and statistical mechanics," Physical Review, Vol. 106, No. 4, 620-630, 1957.
doi:10.1103/PhysRev.106.620
11. Einbu, J. M., "On the existence of a class of maximum-entropy probability density function," IEEE Transactions on Information Theory, Vol. 23, No. 6, 772-775, 1977.
doi:10.1109/TIT.1977.1055784
12. Wiener, N., "The homogeneous chaos," American Journal of Mathematics, Vol. 60, No. 4, 897-936, 1938.
doi:10.2307/2371268
13. D’Atona, G., A. Monti, F. Ponci, and L. Rocca, "Maximum entropy multivariate analysis of uncertain dynamical systems based on the Wiener-Askey polynomial chaos," IEEE Transactions on Instrumentation and Measurement, Vol. 56, No. 3, 689-965, 2007.
doi:10.1109/TIM.2007.894920
14. Smith, S. M., "Stochastic finite-difference time-domain,", Department of Electrical and Computer Engineering, University of Utah, 2011.
15. Alabaster, C. M., "The microwave properties of tissue and other lossy dielectrics,", Department of Aerospace, Power and Sensors, College of Defence Technology, Carnfield University, 2004.
16. Comite, D., A. Galli, E. Pettinelli, and G. Valerio, "Numerical analysis of the detection performance of ground coupled radars for different antenna systems and signal features," 8th European Conference on Antennas and Propagation (EuCAP), 3584-3586, The Hague, The Netherlands, 2014.
17. Petit, J., P. Boher, T. Leroux, P. Barritault, J. Hazart, and P. Chaton, "Improved CD and overlay metrology using an optical Fourier transform instrument," SPIE Metrology, Inspection, and Process Control for Microlithography XIX, Vol. 5752, 420-428, 2005.
doi:10.1117/12.599464
18. Ku, Y., H. Pang, W. Hsu, and D. Shyu, "Accuracy of diffraction-based overlay metrology using single array target," Optical Engineering, Vol. 48, No. 12, 123601-1-123601-7, 2009.
doi:10.1117/1.3275449
19. Lan, H., "Approximation solvability of nonlinear random (A, η)-resolvent operator equations with random relaxed cocoercive operators," Computers & Mathematics with Applications, Vol. 57, No. 4, 624-632, 2009.
doi:10.1016/j.camwa.2008.09.036
20. Gautschi, W., Orthogonal Polynomials Computation and Approximation, Oxford Science Publications, New York, 2004.
21. Capinski, M. and P. E. Kopp, Measure, Integral and Probability, 2nd Edition, Springer Undergraduate Mathematics Series , 2013.
22. Conway, J. B., A Course in Functional Analysis, Springer-Verlag, New York, 1985.
doi:10.1007/978-1-4757-3828-5
23. Szego, G., Orthogonal Polynomials, American Mathematical Society, New York, 1939.
24. Van Beurden, M. C., "Fast convergence with spectral volume integral equation for crossed block-shaped gratings with improved material interface conditions," Journal of the Optical Society of America A, Optics, Image Science and Vision, Vol. 28, No. 11, 2269-2278, 2011.
doi:10.1364/JOSAA.28.002269
25. Tijhuis, A. G., A. R. Bretones, P. D. Smith, and S. R. Cloude, Ultra-wideband, Short-pulse Electromagnetics, Vol. 5, 159–166, Kluwer Academic/Plenum Publishers, New York, United States of America , 2002.
26. Barzegar, E., M. C. van Beurden, S. J. L. van Eijndhoven, and A. G. Tijhuis, "Polynomial chaos for wave propagation in a one dimensional inhomogeneous slab," 8th European Conference on Antennas and Propagation (EuCAP), 1720-1723, The Hague, The Netherlands, 2014.
27. Coenen, T. J. and M. C. van Beurden, "A spectral volume integral method using geometrically conforming normal-vector fields," Progress In Electromagnetics Research, Vol. 142, 15-30, 2013.
doi:10.2528/PIER13060706
28. Li, L., "Use of fourier series in the analysis," Journal of the Optical Society of America A, 1870-1876, 1996.
doi:10.1364/JOSAA.13.001870
29. Koekoek, R. and R. F. Swarttouw, The Askey-scheme of Hypergeometric Orthogonal Polynomials and Its q-analogue, TU Delft, Faculty of Technical Mathematics and Informatics, Delf, Netherlands, 1998.