Vol. 62
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-02-22
Particle Swarm Optimization for Optimal Design of Broadband Multilayer Microwave Absorber for Wide Angle of Incidence
By
Progress In Electromagnetics Research B, Vol. 62, 121-135, 2015
Abstract
Microwave absorbers find a plethora of applications in the modern-day military and civil industries. This paper compares the performance of different variations of the Particle Swarm Optimization (PSO) algorithm to obtain optimal designs for multilayer microwave absorber over different frequency ranges, angles of incidence and polarizations. The goal of this optimization is to minimize maximum overall reflection coefficient of the absorber by choosing suitable layers of materials from a predefined database and simultaneously make the overall thickness the least practically possible. Numerical optimal results for each variation of the PSO are presented and the best results are compared with those existing in literature.
Citation
Subhanwit Roy, Souptik Dutta Roy, Jyotirmay Tewary, Ananya Mahanti, and Gautam Mahanti, "Particle Swarm Optimization for Optimal Design of Broadband Multilayer Microwave Absorber for Wide Angle of Incidence," Progress In Electromagnetics Research B, Vol. 62, 121-135, 2015.
doi:10.2528/PIERB14122602
References

1. Bilotti, F. and L. Vegni, "Design of metamaterial-based resonant microwave absorbers with reduced thickness and absence of a metallic backing," Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, 165-174, Springer Netherlands, 2009.

2. Ramsay, J. F., "Microwave antenna and waveguide techniques before 1900," Proceedings of the IRE, Vol. 46, No. 2, 405-415, 1958.
doi:10.1109/JRPROC.1958.286869

3. Bose, J. C., Collected Physical Papers, Longmans, Green and Co., 1927.

4. Kern, D. J. and D. H. Werner, "A genetic algorithm approach to the design of ultrathin electromagnetic bandgap absorbers," Microwave and Opt. Tech. Letters, Vol. 38, 61-64, 2003.
doi:10.1002/mop.10971

5. Chakravarty, S., R. Mittra, and N. B. Williams, "Application of a microgenetic algorithms (MGA) to the design of broad-band microwave absorbers using multiple frequency selective surface screen buried in dielectrics," IEEE Trans. on Microwave Theory and Techniques, Vol. 50, 284-296, 2002.

6. Tennant, A. and B. Chambers, "A single-layer tuneable microwave absorber using an active FSS," IEEE Microwave and Wireless Components Lett., Vol. 14, No. 1, 46-47, 2004.
doi:10.1109/LMWC.2003.820639

7. Weile, D. S., E. Michielssen, and D. E. Goldberg, "Genetic algorithm design of Pareto optimal broadband microwave absorbers," IEEE Trans. Electromag. Compat., Vol. 38, 518-525, 1996.
doi:10.1109/15.536085

8. Cui, S., D. S. Weile, and J. L. Volakis, "Novel planar electromagnetic absorber designs using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 6, 1811-1817, Jun. 2006.
doi:10.1109/TAP.2006.875460

9. Macedo, J., M. de Sousa, and V. Dmitriev, "Optimization of wide band multilayer microwave absorbers for any angle of incidence and arbitrary polarization," International Conference on Microwave and Optoelectronics, 558-561, Brasilia, Brazil, 2005.

10. Giannakopoulou, T., A. Oikonomou, and G. Kordas, "Double-layer microwave absorbers based on materials with large magnetic and dielectric losses," Journal of Magnetism and Magnetic Materials, Vol. 271, 224-229, 2004.
doi:10.1016/j.jmmm.2003.09.040

11. Saitoh, M., T. Yamamoto, H. Okino, M. Chino, and M. Kobayashi, "Double-layer type microwave absorber made of magnetic-dielectric composite," Ferroelectrics, Vol. 271, No. 1, 297-302, 2002.
doi:10.1080/713716183

12. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

13. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley, 1989.

14. Jiang, L., J. Cui, L. Shi, and X. Li, "Pareto optimal design of multilayer microwave absorbers for wide-angle incidence using genetic algorithms," IET Microw. Antennas Propag., Vol. 3, No. 4, 572-579, 2009.
doi:10.1049/iet-map.2008.0059

15. Goudos, S. K., "A versatile software tool for microwave optimization algorithms," Mater. Des., Vol. 28, 2585-2595, 2007.
doi:10.1016/j.matdes.2006.10.016

16. Asi, M. J. and N. I. Dib, "Design of multilayer microwave broadband absorbers using central force optimization," Progress In Electromagnetics Research B, Vol. 26, 101-113, 2010.
doi:10.2528/PIERB10090103

17. Goudos, S., "Design of microwave broadband absorbers using a self-adaptive differential evolution algorithm," Int. J. RF and Microwave CAE, Vol. 19, 364-372, May 2009.
doi:10.1002/mmce.20357

18. Dib, N., M. Asi, and A. Sabbah, "On the optimal design of multilayer microwave absorbers," Progress In Electromagnetics Research C, Vol. 13, 171-185, 2010.
doi:10.2528/PIERC10041310

19. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702

20. Michielssen, E., J. Sajer, S. Ranjithan, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Trans. on Microwave Theory and Techniques, Vol. 41, No. 6-7, 1024-1031, Jun./Jul. 1993.

21. Liu, H., L. Zhang, Y. Gao, Y. Shen, and D. Shi, "Electromagnetic wave absorber optimal design based on improved particle swarm optimization," EMC 2009, 797-800, IEICE, Kyoto, 2009.

22. Kennedy, J. and R. C. Eberhart, "Particle swarm optimization," Proc. IEEE Int. Conf. Neural Networks, 1942-1948, Perth, Australia, 1995.

23. Li, W. T., X. W. Shi, and Y. Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904

24. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, Feb. 2004.
doi:10.1109/TAP.2004.823969

25. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 556-567, Mar. 2007.
doi:10.1109/TAP.2007.891552

26. Chen, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, "Synthesis of circular antenna array using crossed particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1785-1795, 2006.
doi:10.1163/156939306779292273

27. Boeringer, D. W. and D. H. Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, 771-779, 2004.
doi:10.1109/TAP.2004.825102

18. Pathak, N. N., G. K. Mahanti, S. K. Singh, J. K. Mishra, and A. Chakraborty, "Synthesis of thinned planar circular array antennas using modified particle swarm optimization," Progress In Electromagnetics Research Letters, Vol. 12, 87-97, 2009.
doi:10.2528/PIERL09090606

29. Liang, J. J. and P. N. Suganthan, "Dynamic multi-swarm particle swarm optimizer," Proceedings 2005 IEEE Swarm Intelligence Symposium, SIS 2005, 124-129, Pasadena, California, 2005.

30. Mahmoud, K. R., M. I. Eladawy, R. Bansal, S. H. Zainud-Deen, and S. M. M. Ibrahem, "Analysis of uniform circular arrays for adaptive beamforming applications using particle swarm optimization algorithm," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 18, No. 1, 42-52, Jan. 2008.
doi:10.1002/mmce.20265