1. Poljak, D. and C. A. Brebbia, Boundary Element Methods for Electrical Engineers, Vol. 4, WIT Press, 2005.
2. Szilagyi, M., Electron and Ion Optics, Springer, 1988.
doi:10.1007/978-1-4613-0923-9
3. Liu, Y., Fast Multipole Boundary Element Method: Theory and Applications in Engineering, Cambridge University Press, 2009.
doi:10.1017/CBO9780511605345
4. Lazić, P., H. Štefančić, and H. Abraham, "The robin hood method --- A new view on differential equations," Engineering Analysis with Boundary Elements, Vol. 32, No. 1, 76-89, 2008.
doi:10.1016/j.enganabound.2007.06.004 Google Scholar
5. Formaggio, J. A., P. Lazić, T. J. Corona, H. Štefančić, H. Abraham, and F. Glück, "Solving for micro- and macro-scale electrostatic configurations using the robin hood algorithm," Progress In Electromagnetics Research B, Vol. 39, 1-37, 2012.
doi:10.2528/PIERB11112106 Google Scholar
6. Rokhlin, V., "Rapid solution of integral equations of classical potential theory," Journal of Computational Physics, Vol. 60, No. 2, 187-207, 1985.
doi:10.1016/0021-9991(85)90002-6 Google Scholar
7. Greengard, L. and V. Rokhlin, "The rapid evaluation of potential fields in three dimensions," Vortex Methods, 121-141, 1988.
doi:10.1007/BFb0089775 Google Scholar
8. Beatson, R. and L. Greengard, "A short course on fast multipole methods," Wavelets, Multilevel Methods and Elliptic PDEs, 1-37, Oxford University Press, 1997. Google Scholar
9. Epton, M. A. and B. Dembart, "Multipole translation theory for the three-dimensional laplace and Helmholtz equations," SIAM Journal on Scientific Computing, Vol. 16, No. 4, 865-897, 1995.
doi:10.1137/0916051 Google Scholar
10. Van Gelderen, M., "The shift operators and translations of spherical harmonics," DEOS Progress Letters, Vol. 98, 57, 1998. Google Scholar
11. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, 1998.
12. Lether, F. G., "Computation of double integrals over a triangle," Journal of Computational and Applied Mathematics, Vol. 2, No. 3, 219-224, 1976.
doi:10.1016/0771-050X(76)90008-5 Google Scholar
13. Mousa, M.-H., R. Chaine, S. Akkouche, and E. Galin, "Toward an efficient triangle-based spherical harmonics representation of 3D objects," Computer Aided Geometric Design, Vol. 25, No. 8, 561-575, 2008.
doi:10.1016/j.cagd.2008.06.004 Google Scholar
14. Proriol, J., "Sur une famille de polynomes á deux variables orthogonaux dans un triangle," CR Acad. Sci. Paris, Vol. 245, 2459-2461, 1957. Google Scholar
15. Dubiner, M., "Spectral methods on triangles and other domains," Journal of Scientific Computing, Vol. 6, No. 4, 345-390, 1991.
doi:10.1007/BF01060030 Google Scholar
16. Owens, R., "Spectral approximations on the triangle," Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 454, No. 1971, 857-872, 1998.
doi:10.1098/rspa.1998.0189 Google Scholar
17. Koornwinder, T., "Two-variable analogues of the classical orthogonal polynomials," Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, University Wisconsin, Madison, Wis., 1975), 435-495, Academic Press, New York, 1975. Google Scholar
18. Wait, R. and A. Mitchell, Finite Element Analysis and Applications, Books on Demand, 1985.
19. Taylor, R. L., "On completeness of shape functions for finite element analysis," International Journal for Numerical Methods in Engineering, Vol. 4, No. 1, 17-22, 1972.
doi:10.1002/nme.1620040105 Google Scholar
20. Barnhill, R. E. and J. A. Gregory, "Polynomial interpolation to boundary data on triangles," Mathematics of Computation, Vol. 29, No. 131, 726-735, 1975.
doi:10.1090/S0025-5718-1975-0375735-3 Google Scholar
21. Chen, G. and J. Zhou, Boundary Element Methods, Computational Mathematics and Applications, 1992.
22. Gander, W., "Change of basis in polynomial interpolation," Numerical Linear Algebra with Applications, Vol. 12, No. 8, 769-778, 2005.
doi:10.1002/nla.450 Google Scholar
23. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Courier Dover Publications, 1966.
24. Mason, J. C. and D. C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, 2002.
doi:10.1201/9781420036114
25. Pinchon, D. and P. E. Hoggan, "Rotation matrices for real spherical harmonics: General rotations of atomic orbitals in space-fixed axes," Journal of Physics A: Mathematical and Theoretical, Vol. 40, No. 7, 1597, 2007.
doi:10.1088/1751-8113/40/7/011 Google Scholar
26. Gimbutas, Z. and L. Greengard, "A fast and stable method for rotating spherical harmonic expansions," Journal of Computational Physics, Vol. 228, No. 16, 5621-5627, 2009.
doi:10.1016/j.jcp.2009.05.014 Google Scholar
27. Wigner, E. and J. J. Griffin, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, 1959.
28. Edmonds, A. R., Angular Momentum in Quantum Mechanics, Princeton University Press, 1958.
29. Choi, C. H., J. Ivanic, M. S. Gordon, and K. Ruedenberg, "Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion," The Journal of Chemical Physics, Vol. 111, No. 19, 8825-8831, 1999.
doi:10.1063/1.480229 Google Scholar
30. Lessig, C., T. De Witt, and E. Fiume, "Efficient and accurate rotation of finite spherical harmonics expansions," Journal of Computational Physics, Vol. 231, No. 2, 243-250, 2012.
doi:10.1016/j.jcp.2011.09.014 Google Scholar
31. White, C. A. and M. Head-Gordon, "Rotating around the quartic angular momentum barrier in fast multipole method calculations," The Journal of Chemical Physics, Vol. 105, 5061, 1996.
doi:10.1063/1.472369 Google Scholar
32. Berntsen, J., T. O. Espelid, and A. Genz, "An adaptive algorithm for the approximate calculation of multiple integrals," ACM Transactions on Mathematical Software, Vol. 17, 437-451, Dec. 1991.
doi:10.1145/210232.210233 Google Scholar
33. Cowper, G., "Gaussian quadrature formulas for triangles," International Journal for Numerical Methods in Engineering, Vol. 7, No. 3, 405-408, 1973.
doi:10.1002/nme.1620070316 Google Scholar
34. Duffy, M. G., "Quadrature over a pyramid or cube of integrands with a singularity at a vertex," SIAM Journal on Numerical Analysis, Vol. 19, No. 6, 1260-1262, 1982.
doi:10.1137/0719090 Google Scholar
35. Golub, G. H. and J. H. Welsch, "Calculation of gauss quadrature rules," Mathematics of Computation, Vol. 23, No. 106, 221-230, 1969.
doi:10.1090/S0025-5718-69-99647-1 Google Scholar
36. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM Journal on Scientific and Statistical Computing, Vol. 7, No. 3, 856-869, 1986.
doi:10.1137/0907058 Google Scholar
37. Read, F., "Improved extrapolation technique in the boundary element method to find the capacitances of the unit square and cube," Journal of Computational Physics, Vol. 133, No. 1, 1-5, 1997.
doi:10.1006/jcph.1996.5519 Google Scholar
38. Hudson, R. G. and J. Lipka, A Table of Integrals, John Wiley & Sons, 1917.
39. Peirce, B. O., A Short Table of Integrals, Ginn & Company, 1910.
40. Papantonopoulou, A., Algebra: Pure & Applied, Prentice Hall, 2002.
41. Beachy, J. A. and W. D. Blair, Abstract Algebra, Waveland Press, 2006.