Vol. 63
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-10-29
Electromagnetic Scattering Analysis for Two-Dimensional Gaussian Rough Surfaces with Texture Characteristics Using Small-Slope Approximation Method
By
Progress In Electromagnetics Research B, Vol. 63, 289-301, 2015
Abstract
This paper is aimed at analyzing the electromagnetic (EM) scattering from the two-dimensional (2-D) Gaussian rough surfaces characterized by textures. Visual appearances of the stripe texture can be generated through the angle rotating in Fourier transform when the ratio of the correlation lengths in two directions is large enough. The scattering field is derived in Cartesian coordinate system through the small-slope approximation (SSA) method with plane incident wave. The normalized co-polarized radar cross section (NRCS) from 2-D Gaussian rough surface characterized by textures are calculated. In particular, several numerical results show the influences of incident angle, texture angle, correlation length, and root-mean-square height on the scattering from the textured rough surface. Finally, the validity of the SSA method is verified by comparisons of theoretical value and measured data.
Citation
Rong-Qing Sun, Jing Xie, and Yang-Wei Zhang, "Electromagnetic Scattering Analysis for Two-Dimensional Gaussian Rough Surfaces with Texture Characteristics Using Small-Slope Approximation Method," Progress In Electromagnetics Research B, Vol. 63, 289-301, 2015.
doi:10.2528/PIERB15080101
References

1. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Advanced Topics, Wiley Series in Remote Sensing, Wiley Interscience, 2001.
doi:10.1002/0471224278

2. Zhao, Y. W., M. Zhang, X. Geng, and P. Zhou, "A comprehensive facet model for bistatic SAR imagery of dynamic ocean scene," Progress In Electromagnetics Research, Vol. 123, 427-445, 2012.
doi:10.2528/PIER11100910

3. Mcdaniel, S. T., "An extension of the small-slope approximation for rough surface scattering," Waves in Random Media, Vol. 5, No. 2, 201-214, 1995.
doi:10.1088/0959-7174/5/2/004

4. Sun, R. Q., G. Luo, M. Zhang, and C. Wang, "Electromagnetic scattering model of the Kelvin wake and turbulent wake by a moving ship," Waves in Random Media, Vol. 21, No. 3, 501-504, 2011.
doi:10.1080/17455030.2011.591446

5. Chen, H., M. Zhang, and H.-C. Yin, "Facet-based treatment on microwave bistatic scattering of three-dimensional sea surface with electrically large ship," Progress In Electromagnetics Research, Vol. 123, 385-405, 2012.
doi:10.2528/PIER11101108

6. Warnick, K. F. and W. C. Chew, "Numerical simulation methods for rough surface scattering," Waves in Random Media, Vol. 11, No. 1, R1-R30, 2001.
doi:10.1088/0959-7174/11/1/201

7. Thorsos, E. I., "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust. Soc. Am., Vol. 83, No. 1, 78-92, 1988.
doi:10.1121/1.396188

8. Guo, L.-X., Y. Liang, J. Li, and Z.-S. Wu, "A high order integral SPM for the conducting rough surface scattering with the tapered wave incidence --- TE case ," Progress In Electromagnetics Research, Vol. 114, 333-352, 2011.
doi:10.2528/PIER11011605

9. Lee, P. H. Y., et al. "Wind-speed dependence of small-grazing-angle microwave backscatter from sea surfaces," IEEE Trans. Antennas Propagat., Vol. 44, No. 3, 333-340, 1996.
doi:10.1109/8.486302

10. Sajjad, N., A. Khenchaf, et al. "An improved two-scale model for the ocean surface bistatic scattering," Proc. Of International Geoscience and Remote Sensing Symposium, Vol. 1, 387-390, 2008.

11. Vaitilingom, L. and A. Khenchaf, "Radar cross sections of sea and ground clutter estimated by two scale model and small slope approximation in Hf-VHF bands," Progress In Electromagnetics Research B, Vol. 29, 311-338, 2011.
doi:10.2528/PIERB11021607

12. Voronovich, A. G., "Small-slope approximation in wave scattering by rough surfaces," Sov. Phys.-JETP, Vol. 62, 65-70, 1985.

13. Berginc, G. and C. Bourrely, "The small-slope approximation method applied to a three-dimensional slab with rough boundaries," Progress In Electromagnetics Research, Vol. 73, 131-211, 2007.
doi:10.2528/PIER07030806

14. Toporkov, J. V. and G. S. Brown, "Numerical study of the extended Kirchhoff approach and the lowest order small slope approximation for scattering from ocean-like surfaces: Doppler analysis," IEEE Trans. Antennas Propagat., Vol. 50, No. 4, 417-425, 2002.
doi:10.1109/TAP.2002.1003376

15. Chevalier, B. and G. Berginc, "Small-slope approximation method: scattering of a vector wave from 2-D dielectric and metallic surfaces with Gaussian and non-Gaussian statistics," Proceedings of SPIE, Vol. 4100, 22-32, 2000.
doi:10.1117/12.401662

16. Johnson, J. T. and K. F. Warnick, "On the geometrical optics (Hagfors' law) and physical optics approximations for scattering from exponentially correlated surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 8, 2619-2629, 2007.
doi:10.1109/TGRS.2007.900682

17. Hu, S. Z., et al. "Comparison of various approximation theories for randomly rough surface scattering," Wave Motion, Vol. 46, No. 5, 281-292, 2009.
doi:10.1016/j.wavemoti.2009.03.001

18. Li, X. F. and X. J. Xu, "Scattering and doppler spectral analysis for two-dimensional linear and nonlinear sea surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 2, 603-611, 2011.
doi:10.1109/TGRS.2010.2060204

19. Cao, G. Z., P. Hou, Y. Q. Jin, et al. "Image fusion of SAR remote sensing with Laplacian Pyramid transformation fusion algorithm based on local conditional information of image," Remote Sensing Technology and Application, Vol. 22, No. 5, 628-632, 2007.

20. Wei, P. B., M. Zhang, R. Q. Sun, and X. F. Yuan, "Scattering studies for two-dimensional exponential correlation textured rough surfaces using small-slope approximation method," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 9, 5364-5373, 2014.
doi:10.1109/TGRS.2013.2288278

21. Prakash, R., D. Singh, and N. P. Pathak, "Microwave specular scattering response of soil texture at X-band," Advances in Space Research, Vol. 44, No. 7, 801-814, 2009.
doi:10.1016/j.asr.2009.05.016

22. Hu, Y. Z. and K. Tonder, "Simulation of 3-D random rough surface by 2-D digital filter and Fourier analysis," Int. J. Mach. Tools Manufact., Vol. 32, No. 12, 83-90, 1992.
doi:10.1016/0890-6955(92)90064-N

23. Zhang, M., H. Chen, and H. C. Yin, "Facet-based investigation on EM scattering from electrically large sea surface with two-scale profiles: Theoretical model," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 6, 1967-1975, 2011.
doi:10.1109/TGRS.2010.2099662

24. Tsang, L., J. A. Kong, K. H. Ding, and C. A. Ao, Scattering of Electromagnetic Waves, Numerical Simulations, 124-134, Wiley Series in Remote Sensing, Wiley Interscience, 2001.
doi:10.1002/0471224308

25. Tatarskii, V. I. and V. V. Tatarskii, "Statistical non-Gaussian model of sea surface with anisotropic spectrum for wave scattering theory. Part I," Progress In Electromagnetics Research, Vol. 22, 259-291, 1999.

26. Voronovich, A. G. and V. U. Zavorotny, "Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves," Waves in Random Media, Vol. 11, No. 3, 247-269, 2001.

27. Voronovich, A. G., "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces," Waves in Random Media, Vol. 4, 337-367, 1994.
doi:10.1088/0959-7174/4/3/008

28. Chevalier, B. and G. Berginc, "Small-slope approximation method: scattering of a vector wave from 2-D dielectric and metallic surfaces with Gaussian and non-Gaussian statistics," Proceedings of SPIE, Vol. 4100, 22-32, 2000.
doi:10.1117/12.401662

29. Bourlier, C., N. Déchamps, and G. Berginc, "Comparison of asymptotic backscattering models (SSA,WCA, and LCA) from one-dimensional Gaussian ocean-like surfaces," IEEE Trans. Antennas Propagat., Vol. 53, No. 5, 1640-1652, 2005.
doi:10.1109/TAP.2005.846800

30. Stogryn, A., "Equations for calculating the dielectric constant of saline water," IEEE Trans. Micro. Theory Tech., Vol. 19, No. 8, 733-736, 1971.
doi:10.1109/TMTT.1971.1127617

31. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive --- From Theory to Applications, Artech House, 1986.