1. Beltrami, E., "Considerazioni idrodinamiche," Rendiconti del reale Instituto Lombardo, t.XXII, 121-130, Milano, 1889. Google Scholar
2. Gromeka, I., "Some cases of incompressible fluids motion," Scientific notes of the Kazan University, 1881, I. Gromeka, Collected works, 76-148, AN USSR, Moscow, 1952 (in Russian). Google Scholar
3. Silberstein, L., "Elektromagnetische Grundgleichungen in bivectorieller Behandlung, (Basic electromagnetic equations in bivectorial form)," Ann. D. Phys., Vol. 327, 876-880, 1907.
doi:10.1002/andp.19073270313 Google Scholar
4. Weber, H., "Die parttiellen Di®erential-Gleichungen der mathematischen Physik nach Riemann's Vorlesungen bearbeitet von Heinrich Weber (Braunschweig: Friedrich Vieweg und Sohn),", 348, 1901. Google Scholar
5. Bialynicki-Birula, I., "Photon wave function," Progress in Optics, Vol. 36, 245-294, 1996.
doi:10.1016/S0079-6638(08)70316-0 Google Scholar
6. Bialynicki-Birula, I., "The role of the Riemann-Silberstein vector in classical and quantum theories of electromagnetism," Journal of Physics A Mathematical and Theoretical, Vol. 46, No. 15, Nov. 2012. Google Scholar
7. Von Laue, M., Die RelativitÄatstheorie. Zweiter Band: Die Allgemeine RelativitÄatstheorie Und Einsteins Lehre Von Der Schwerkraft, Friedr. Vieweg & Sohn, 1921 and 1923.
8. Minkowski, H., "Die Grundgleichungen fur die elektromagnetischen Vorgange in bewegten Korpern," Nachrichten von der Gesellschaft der Wissenschaften zu GÄottingen, Mathematisch-Physikalische Klasse, 53-111, 1908. Google Scholar
9. Bateman, H., The Mathematical Analysis of Electrical and Optical Wave-motion, University Press, 1915.
10. Lewin, L., Theory of Waveguides, Butterworth and Co Ltd., 1975.
11. Rumsey, V. H., "A new way of solving Maxwell's equations," IRE Transactions on Antennas and Propagation, 461-465, Sep. 1961.
doi:10.1109/TAP.1961.1145047 Google Scholar
12. Lakhtakia, A., "Time-dependent Beltrami fields in material continua: The Beltrami-Maxwell postulates," International Journal of Infrared and Millimeter Waves, Vol. 15, No. 2, 369-394, 1994.
doi:10.1007/BF02096247 Google Scholar
13. Lakhtakia, A., Beltrami Fields in Chiral Media, World Scientific, 1994.
doi:10.1142/2031
14. Lakhtakia, A., "Vector spherical wavefunctions for orthorhombic dielectric-magnetic material with gyrotropic-like magnetoelectric properties," Journal of Optics, Vol. 41, No. 4, 201-213, Dec. 2012.
doi:10.1007/s12596-012-0084-y Google Scholar
15. Kogan, B. L., Electromagnetic waves of a circular polarization in antenna theory (In Russian), Doctor of technical science dissertation, Dept. of Antennas and Wave Propagation, Moscow Power Engineering Institute, Moscow, Russia, 2004.
16. Gelfand, I. M., R. A. Minlos, and Z. Y. Shapiro, Representations of the Rotation and Lorentz Group and Their Applications, Pergamon Press, 1963.
17. Vilenkin, N. Ya., Special Functions and the Theory of Group Representations (Translations of Mathematical Monographs), Vol. 22, Providence, 1968.
18. Varshalovich, D. A., A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, 1988.
doi:10.1142/0270
19. Kogan, B. L., "About vector spherical harmonics of circular polarization (In Russian)," Antenny, No. 2, 59-63, 2004. Google Scholar
20. Kogan, B. L., "Application of Faraday's vectors in antenna theory," 1st Eur. Conf. Ant. and Propag. (EuCAP), Nice, France, Nov. 2006. Google Scholar