1. Bocan, K. and E. Sejdic, "Adaptive transcutaneous power transfer to implantable devices: A state of the art review," Sensors, Vol. 16, No. 3, 393, 2016.
doi:10.3390/s16030393 Google Scholar
2. Lenaerts, B. and R. Puers, Omnidirectional Inductive Powering for Biomedical Implants, Springer, 2009.
doi:10.1007/978-1-4020-9075-2
3. Yakovlev, A., S. Kim, and A. Poon, "Implantable biomedical devices: Wireless powering and communication," IEEE Commun. Mag., Vol. 50, No. 4, 152-159, 2012.
doi:10.1109/MCOM.2012.6178849 Google Scholar
4. Zeng, F.-G., S. Rebscher, W. Harrison, X. Sun, and H. Feng, "Cochlear implants: System design, integration and evaluation," IEEE Rev. Biomed. Eng., Vol. 1, 115-142, 2008.
doi:10.1109/RBME.2008.2008250 Google Scholar
5. Bradley, K., "The technology: The anatomy of a spinal cord and nerve root stimulator: The lead and the power source," Pain Med., Vol. 7, No. SUPPL 1, S27-S34, 2006.
doi:10.1111/j.1526-4637.2006.00120.x Google Scholar
6. Zhou, D. and E. Greenbaum, Implantable Neural Prostheses 1. Devices and Applications, Springer-Verlag, 2009.
doi:10.1007/978-0-387-98120-8_2
7. Weiland, J., W. Liu, and M. Humayun, "Retinal prosthesis," Annu. Rev. Biomed. Eng., Vol. 7, 361-401, 2005.
doi:10.1146/annurev.bioeng.7.060804.100435 Google Scholar
8. Li, X., Y. Yang, and Y. Gao, "Visual prosthesis wireless energy transfer system optimal modeling," Biomed. Eng. Online, Vol. 13, No. 1, 2014. Google Scholar
9. Baumgart, R., P. Thaller, S. Hinterwimmer, M. Krammer, T. Hierl, and W. Mutschler, "A fully implantable, programmable distraction nail (fitbone) — New perspectives for corrective and reconstructive limb surgery in practice of intramedullary locked nails," Practice of Intramedullary Locked Nails, 189-198, Springer, Berlin, Heidelberg, 2006. Google Scholar
10. Bergmann, G., F. Graichen, J. Dymke, A. Rohlmann, G. N. Duda, and P. Damm, "High-tech hip implant for wireless temperature measurements in vivo," PLoS One, Vol. 7, No. 8, e43489, 2012.
doi:10.1371/journal.pone.0043489 Google Scholar
11. Wang, J., J. Smith, and P. Bonde, "Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability," Ann. Thorac. Surg., Vol. 97, No. 4, 1467-1474, 2014.
doi:10.1016/j.athoracsur.2013.10.107 Google Scholar
12. Slaughter, M. and T. Myers, "Transcutaneous energy transmission for mechanical circulatory support systems: history, current status, and future prospects," J. Cardiac Surg., Vol. 25, No. 4, 484-489, 2010.
doi:10.1111/j.1540-8191.2010.01074.x Google Scholar
13. Danilov, A. A., G. P. Itkin, and S. V. Selishchev, "Progress in methods for transcutaneous wireless energy supply to implanted ventricular assist devices," Biomed. Eng., Vol. 44, No. 4, 125-129, 2010.
doi:10.1007/s10527-010-9169-6 Google Scholar
14. Puers, R. and G. Vandervoorde, "Recent progress on transcutaneous energy transfer for total artificial heart System," Artif. Organs, Vol. 25, No. 5, 400-405, 2001.
doi:10.1046/j.1525-1594.2001.025005400.x Google Scholar
15. Leung, H. Y., D. M. Budgett, and A. P. Hu, "Minimizing power loss in air-cored coils for TET heart pump systems," IEEE J. Emerg. Sel. Top. Circuits Syst., Vol. 1, No. 8, 412-419, 2011.
doi:10.1109/JETCAS.2011.2164974 Google Scholar
16. Choi, S.-W. and M.-H. Lee, "Coil-capacitator circuit design of a transcutaneous energy transmission system to deliver stable electric power," ETRI J., Vol. 30, No. 6, 844-849, 2008.
doi:10.4218/etrij.08.0108.0321 Google Scholar
17. Bock, D., A. Marschilok, K. Takeuchi, and E. Takeuchi, "Batteries used to power implantable biomedical devices," Electrochim. Acta, Vol. 84, 155-164, 2012.
doi:10.1016/j.electacta.2012.03.057 Google Scholar
18. Amar, A., A. Kouki, and H. Cao, "Power approaches for implantable medical devices," Sensors, Vol. 15, No. 11, 28889-28914, 2015.
doi:10.3390/s151128889 Google Scholar
19. Larsson, B., H. Elmqvist, L. Ryden, and H. Shueller, "Lessons from the first patient with an implanted pacemaker: 1958–2001," PACE, Vol. 26, No. 1, Pt. 1, 114-124, 2003.
doi:10.1046/j.1460-9592.2003.00162.x Google Scholar
20. Schuder, J. C., "Powering an artificial heart: Birth of the inductively coupled-radio frequency system in 1960," Artif. Organs, Vol. 26, No. 11, 909-915, 2002.
doi:10.1046/j.1525-1594.2002.07130.x Google Scholar
21. Jegadeesan, R. and Y.-X. Guo, "Topology selection and efficiency improvement of inductive power links," IEEE T. Antenn. Propag., Vol. 60, No. 10, 4846-4854, 2012.
doi:10.1109/TAP.2012.2207325 Google Scholar
22. Hu, L., Y. Fu, X. Ruan, H. Xie, and X. Fu, "Detecting malposition of coil couple for transcutaneous energy transmission," ASAIO J., Vol. 62, No. 1, 56-62, 2016.
doi:10.1097/MAT.0000000000000289 Google Scholar
23. Danilov, A. A. and E. A. Mindubaev, "Influence of angular coil displacements on effectiveness of wireless transcutaneous inductive energy transmission," Biomed. Eng., Vol. 49, No. 3, 171-173, 2015.
doi:10.1007/s10527-015-9523-9 Google Scholar
24. Friedmann, J., F. Groedl, and R. Kennel, "A novel universal control scheme for transcutaneous energy transfer (TET) applications," IEEE J. Emerg. Sel. Top. Circuits Syst., Vol. 3, No. 1, 296-305, 2015. Google Scholar
25. Ghovanloo, M., "An overview of the recent wideband transcutaneous wireless communication techniques," 33rd Annual International Conference of the IEEE EMBS, 5864-5867, 2011. Google Scholar
26. Zierhofer, C. M. and E. S. Hochmair, "Geometric approach for coupling enhancement of magnetically coupled coils," IEEE Trans. Biomed. Eng., Vol. 43, No. 7, 708-714, 1996.
doi:10.1109/10.503178 Google Scholar
27. Jow, U.-M. and M. Ghovanloo, "Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission," IEEE Transactions on Biomedical Circuits and Systems, Vol. 1, No. 3, 193-202, 2007.
doi:10.1109/TBCAS.2007.913130 Google Scholar
28. Danilov, A. A., E. A. Mindubaev, and S. V. Selishchev, "Space-frequency approach to design of displacement tolerant transcutaneous energy transfer system," Progress In Electromagnetics Research M, Vol. 44, 91-100, 2015.
doi:10.2528/PIERM15082006 Google Scholar
29. Babic, S. and C. Akyel, "New formulas for mutual inductance and axial magnetic force between magnetically coupled coils: Thick circular coil of the rectangular cross-section-thin disk coil (pancake)," IEEE T. Magn., Vol. 49, No. 7, 860-868, 2013.
doi:10.1109/TMAG.2012.2212909 Google Scholar
30. Babic, S., F. Sirois, C. Akyel, G. Lemarquand, V. Lemarquand, and R. Ravaud, "New formulas for mutual inductance and axial magnetic force between a thin wall solenoid and a thick circular coil of rectangular cross-section," IEEE T. Magn., Vol. 47, No. 8, 2034-2044, 2011.
doi:10.1109/TMAG.2011.2125796 Google Scholar
31. Babic, S. I. and C. Akyel, "Calculating mutual inductance between circular coils with inclined axes in air," IEEE T. Magn., Vol. 44, No. 7, 1743-1750, 2008.
doi:10.1109/TMAG.2008.920251 Google Scholar
32. Conway, J. T., "Inductance calculations for noncoaxial coils using Bessel functions," IEEE T. Magn., Vol. 43, No. 3, 1023-1034, 2007.
doi:10.1109/TMAG.2006.888565 Google Scholar
33. Conway, J. T., "Noncoaxial inductance calculations without the vector potential for axisymmetric coils and planar coils," IEEE T. Magn., Vol. 44, No. 4, 453-462, 2008.
doi:10.1109/TMAG.2008.917128 Google Scholar
34. Conway, J. T., "Exact solutions for the mutual inductance of circular coils and elliptic coils," IEEE T. Magn., Vol. 48, No. 1, 81-94, 2012.
doi:10.1109/TMAG.2011.2161768 Google Scholar
35. Conway, J. T., "Analytical solutions for the self and mutual inductances of concentric coplanar disk coils," IEEE T. Magn., Vol. 49, No. 3, 1135-1142, 2013.
doi:10.1109/TMAG.2012.2229287 Google Scholar
36. Babic, S. and C. Akyel, "Magnetic force between inclined circular filaments placed in any desired position," IEEE T. Magn., Vol. 48, No. 1, 69-80, 2012.
doi:10.1109/TMAG.2011.2165077 Google Scholar
37. Babic, S., F. Sirois, C. Akyel, and C. Girardi, "Mutual inductance calculation between circular filaments arbitrarily positioned in space: Alternative to Grover’s formula," IEEE T. Magn., Vol. 46, No. 9, 3591-3600, 2010.
doi:10.1109/TMAG.2010.2047651 Google Scholar
38. Soma, M., D. C. Galbraith, and L. W. White, "Radio-frequency coils in implantable devices: Misalignment analysis and design procedure," IEEE Trans. Biomed. Eng., Vol. BME-34, No. 4, 276-282, 1987.
doi:10.1109/TBME.1987.326088 Google Scholar
39. Kalantarov, P. L., "Inductance Calculations," National Power Press, 1955. Google Scholar
40. Krasteva, V. T., S. P. Papazov, and I. K. Daskalov, "Magnetic stimulation for non-homogeneous biological structure," Biomed. Eng. Online, Vol. 1, 2002. Google Scholar
41. Ahma, L., M. Ibrani, and E. Hamiti, "Computation of SAR distribution in a human exposed to mobile phone electromagnetic fields," PIERS Proceedings, 1580-1582, Xi’an, China, March 22–26, 2010. Google Scholar
42. Ke, L., G. Yan, S. Yan, Z. Wang, and D. Liu, "Improvement of the coupling factor of Litz-wire coil pair with ferrite substrate for transcutaneous energy transfer system," Progress In Electromagnetics Research M, Vol. 39, 41-52, 2014.
doi:10.2528/PIERM14080604 Google Scholar
43. Owens, J. D., M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, "GPU computing," P. IEEE, Vol. 96, No. 5, 879-889, 2008.
doi:10.1109/JPROC.2008.917757 Google Scholar
44. Nickolls, J. and W. J. Dally, "The GPU computing era," IEEE Micro., Vol. 30, No. 2, 56-69, 2010.
doi:10.1109/MM.2010.41 Google Scholar