1. Bolea, M., J. Mora, B. Ortega, and J. Capmany, "Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats," Optics Express, Vol. 17, 5023-5032, 2009.
doi:10.1364/OE.17.005023 Google Scholar
2. Chow, C., S. Huang, L. Yang, and C. Yeh, "Extended-reach access network with downstream radio-over-fiber (ROF) signal and upstream NRZ signal using orthogonal-WDM," Optics Express, Vol. 20, 16757-16762, 2012.
doi:10.1364/OE.20.016757 Google Scholar
3. Pan, S. and J. Yao, "UWB-over-fiber communications: Modulation and transmission," Journal of Lightwave Technology, Vol. 28, 2445-2455, 2010.
doi:10.1109/JLT.2010.2043713 Google Scholar
4. Goda, K., K. Tsia, and B. Jalali, "Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena," Nature, Vol. 458, 1145-1149, 2009.
doi:10.1038/nature07980 Google Scholar
5. Hansen, H., "Standoff detection using millimeter and submillimeter wave spectroscopy," Proceedings of the IEEE, Vol. 95, 1691-1704, 2007.
doi:10.1109/JPROC.2007.900331 Google Scholar
6. Miyakawa, M. and J. C. Bolomey, Non-invasive Thermometry of the Human Body, CRC Press, 1995.
7. Nashashibi, A. Y., K. Sarabandi, P. Frantzis, R. D. De Roo, and F. T. Ulaby, "An ultrafast wide-band millimeter-wave (MMW) polarimetric radar for remote sensing applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, 1777-1786, 2002.
doi:10.1109/TGRS.2002.802462 Google Scholar
8. Capmany, J., J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, "Microwave photonic signal processing," Journal of Lightwave Technology, Vol. 31, 571-586, 2013.
doi:10.1109/JLT.2012.2222348 Google Scholar
9. Capmany, J. and D. Novak, "Microwave photonics combines two worlds," Nature Photonics, Vol. 1, 319-330, 2007.
doi:10.1038/nphoton.2007.89 Google Scholar
10. Yu, X., K. Wang, X. Zheng, and H. Zhang, "Incoherent photonic digital-to-analogue converter based on broadband optical source," Electronics Letters, Vol. 43, 1, 2007.
doi:10.1049/el:20073849 Google Scholar
11. Han, Y. and B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations," Journal of Lightwave Technology, Vol. 21, 3085, 2003.
doi:10.1109/JLT.2003.821731 Google Scholar
12. Lin, I. S., J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave and Wireless Components Letters, Vol. 15, 226-228, 2005.
doi:10.1109/LMWC.2005.845698 Google Scholar
13. Jason, C., H. Yan, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEICE Transactions on Electronics, Vol. 86, 1226-1229, 2003. Google Scholar
14. Yao, J., "Photonic generation of microwave arbitrary waveforms," Optics Communications, Vol. 284, 3723-3736, 2011.
doi:10.1016/j.optcom.2011.02.069 Google Scholar
15. Chen, L. R., "Photonic generation of chirped microwave and millimeter wave pulses based on optical spectral shaping and wavelength-to-time mapping in silicon photonics," Optics Communications, Vol. 373, 70-81, 2016.
doi:10.1016/j.optcom.2015.04.023 Google Scholar
16. Fandino, J. S., P. Munoz, D. Domenech, and J. Capmany, "A monolithic integrated photonic microwave filter," Nature Photonics, Vol. 11, 124-129, Oct. 23, 2016.
doi:10.1038/nphoton.2016.233 Google Scholar
17. Marpaung, D., C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, "Integrated microwave photonics," Laser & Photonics Reviews, Vol. 7, 506-538, 2013.
doi:10.1002/lpor.201200032 Google Scholar
18. Shoeiby, M., A. Mitchell, and L. Bui, "Real time all optical correlator for serialized time encoded signals," Optics Communications, Vol. 338, 34-39, 2015.
doi:10.1016/j.optcom.2014.10.024 Google Scholar
19. Sarkhosh, N., H. Emami, L. Bui, and A. Mitchell, "Reduced cost photonic instantaneous frequency measurement system," IEEE Photonics Technology Letters, Vol. 20, 1521-1523, 2008.
doi:10.1109/LPT.2008.927895 Google Scholar
20. Emami, H., N. Sarkhosh, L. Bui, and A. Mitchell, "Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform," Optics Express, Vol. 16, 13707-13712, 2008.
doi:10.1364/OE.16.013707 Google Scholar
21. Emami, H., N. Sarkhosh, L. A. Bui, and A. Mitchell, "Wideband RF photonic in-phase and quadrature-phase generation," Optics Letters, Vol. 33, 98-100, 2008.
doi:10.1364/OL.33.000098 Google Scholar
22. Rashidinejad, A., Y. Li, and A. M. Weiner, "Recent advances in programmable photonic-assisted ultrabroadband radio-frequency arbitrary waveform generation," IEEE Journal of Quantum Electronics, Vol. 52, 1-17, 2016.
doi:10.1109/JQE.2015.2506987 Google Scholar
23. Dezfooliyan, A. and A. M. Weiner, "Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping," Optics Express, Vol. 21, 22974-22987, 2013.
doi:10.1364/OE.21.022974 Google Scholar
24. Weiner, A. M., "Ultrafast optical pulse shaping: A tutorial review," Optics Communications, Vol. 284, 3669-3692, 2011.
doi:10.1016/j.optcom.2011.03.084 Google Scholar
25. Torres-Company, V., A. J. Metcalf, D. E. Leaird, and A. M. Weiner, "Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping," IEEE Photonics Technology Letters, Vol. 24, 891-893, 2012.
doi:10.1109/LPT.2012.2190054 Google Scholar
26. Wang, J., H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, et al. "Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip," Nature Communications, Vol. 6, 2015. Google Scholar
27. Bazargani, H. P. and J. Azana, "Optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers," Optics Express, Vol. 23, 23450-23461, 2015.
doi:10.1364/OE.23.023450 Google Scholar
28. Bolea, M., J. Mora, B. Ortega, and J. Capmany, "Photonic arbitrary waveform generation applicable to multiband UWB communications," Optics Express, Vol. 18, 26259-26267, 2010.
doi:10.1364/OE.18.026259 Google Scholar
29. Rashidinejad, A. and A. M. Weiner, "Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability," Journal of Lightwave Technology, Vol. 32, 3383-3393, 2014.
doi:10.1109/JLT.2014.2331491 Google Scholar
30. Li, Y., A. Dezfooliyan, and A. M. Weiner, "Photonic synthesis of spread spectrum radio frequency waveforms with arbitrarily long time apertures," Journal of Lightwave Technology, Vol. 32, 3580-3587, 2014.
doi:10.1109/JLT.2014.2320933 Google Scholar
31. Mora, J., B. Ortega, A. Dıez, J. L. Cruz, M. V. Andres, J. Capmany, et al. "Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer," Journal of Lightwave Technology, Vol. 24, 2500, 2006.
doi:10.1109/JLT.2006.874652 Google Scholar
32. Nguyen, T. G., M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, et al. "Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis," Optics Express, Vol. 23, 22087-22097, 2015.
doi:10.1364/OE.23.022087 Google Scholar
33. Pasquazi, A., L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, et al. "Self-locked optical parametric oscillation in a CMOS compatible microring resonator: A route to robust optical frequency comb generation on a chip," Optics Express, Vol. 21, 13333-13341, 2013.
doi:10.1364/OE.21.013333 Google Scholar
34. Soref, R., "The past, present, and future of silicon photonics," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, 1678-1687, 2006.
doi:10.1109/JSTQE.2006.883151 Google Scholar
35. Inniss, D. and R. Rubenstein, Silicon Photonics: Fueling the Next Information Revolution, Morgan Kaufmann, 2016.
36. Rao, A., M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, et al. "Secondharmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon," Optics Express, Vol. 24, 29941-29947, 2016.
doi:10.1364/OE.24.029941 Google Scholar
37. Zhang, W. and J. Yao, "Silicon-based on-chip electrically-tunable spectral shaper for continuously tunable linearly chirped microwave waveform generation," Journal of Lightwave Technology, Vol. 34, 4664-4672, 2016.
doi:10.1109/JLT.2016.2574125 Google Scholar
38. Metcalf, A. J., H.-J. Kim, D. E. Leaird, J. A. Jaramillo-Villegas, K. A. McKinzie, V. Lal, et al. "Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering," Optics Express, Vol. 24, 23925-23940, 2016.
doi:10.1364/OE.24.023925 Google Scholar
39. Qin, C., S. Feng, K. Shang, S. Pathak, B. Guan, M. Clements, et al. "Dynamic optical arbitrary waveform generation from a heterogeneously integrated InP/Si3N4 chip-scale module," Optical Fiber Communications Conference and Exhibition (OFC), 2016, 1-3, 2016. Google Scholar
40. Liu, W., M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, et al. "A fully reconfigurable photonic integrated signal processor," Nature Photonics, Vol. 10, 190-195, 2016.
doi:10.1038/nphoton.2015.281 Google Scholar
41. Liao, S., Y. Ding, J. Dong, S. Yan, X. Wang, and X. Zhang, "Photonic arbitrary waveform generator based on Taylor synthesis method," Optics Express, Vol. 24, 24390-24400, 2016.
doi:10.1364/OE.24.024390 Google Scholar
42. Asghari, M. H. and J. Azana, "Proposal and analysis of a reconfigurable pulse shaping technique based on multi-arm optical differentiators," Optics Communications, Vol. 281, 4581-4588, 2008.
doi:10.1016/j.optcom.2008.05.037 Google Scholar
43. Chen, L. R., "Silicon photonics for microwave photonics applications," Journal of Lightwave Technology, Vol. 35, 824-835, 2017.
doi:10.1109/JLT.2016.2613861 Google Scholar
44. Rius, M., M. Bolea, J. Mora, and J. Capmany, "Incoherent photonic processing for chirped microwave pulse generation," IEEE Photonics Technology Letters, Vol. 29, 7-10, 2017.
doi:10.1109/LPT.2016.2623360 Google Scholar
45. Rius, M., M. Bolea, J. Mora, and J. Capmany, "Chirped waveform generation with envelope reconfigurability for pulse compression radar," IEEE Photonics Technology Letters, Vol. 28, 748-751, 2016.
doi:10.1109/LPT.2015.2509022 Google Scholar
46. Li, Y. and A. M. Weiner, "Photonic-assisted error-free wireless communication with multipath precompensation covering 2–18 GHz," Journal of Lightwave Technology, Vol. 34, 4154-4161, 2016.
doi:10.1109/JLT.2016.2591438 Google Scholar
47. Kim, H.-J., D. E. Leaird, and A. M. Weiner, "Rapidly tunable dual-comb RF photonic filter for ultrabroadband RF spread spectrum applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, 3351-3362, 2016.
doi:10.1109/TMTT.2016.2599162 Google Scholar
48. Ma, C., Y. Jiang, G. Bai, Y. Tang, X. Qi, Z. Jia, et al. "Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach-Zehnder modulator," Optics Communications, Vol. 363, 207-210, 2016.
doi:10.1016/j.optcom.2015.10.054 Google Scholar
49. Gao, Y., A. Wen, W. Liu, H. Zhang, and S. Xiang, "Photonic generation of triangular pulses based on phase modulation and spectrum manipulation," IEEE Photonics Journal, Vol. 8, 1-9, 2016.
doi:10.1109/JPHOT.2016.2522089 Google Scholar
50. Li, J., J. Sun, W. Xu, T. Ning, L. Pei, J. Yuan, et al. "Frequency-doubled triangular-shaped waveform generation based on spectrum manipulation," Optics Letters, Vol. 41, 199-202, 2016.
doi:10.1364/OL.41.000199 Google Scholar
51. Yuan, J., T. Ning, J. Li, L. Pei, H. Chen, C. Zhang, et al. "Investigation on quadrupling triangularshaped pulses generator with flexible repetition rate tunability," Optical and Quantum Electronics, Vol. 48, 1-12, 2016.
doi:10.1007/s11082-015-0274-3 Google Scholar
52. Yuan, J., T. Ning, J. Li, H. Chen, Y. Li, and C. Zhang, "A photonic-assisted periodic triangular-shaped pulses generator based on FWM effect in an SOA," Optics Communications, Vol. 381, 450-456, 2016.
doi:10.1016/j.optcom.2015.11.067 Google Scholar
53. Wu, T., Y. Jiang, C. Ma, Z. Jia, G. Bai, Y. Zi, et al. "Simultaneous triangular waveform signal and microwave signal generation based on dual-loop optoelectronic oscillator," IEEE Photonics Journal, Vol. 8, 1-10, 2016. Google Scholar
54. Zhou, P., F. Zhang, X. Ye, Q. Guo, and S. Pan, "Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser," IEEE Photonics Journal, Vol. 8, 1-9, 2016. Google Scholar