Vol. 75
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-04-15
A Review of Photonic Generation of Arbitrary Microwave Waveforms
By
Progress In Electromagnetics Research B, Vol. 75, 1-12, 2017
Abstract
This paper presents a tutorial on photonic techniques for arbitrary RF waveform generation, highlights some key results and reviews the recent developments in this area. It also predicts that photonic integration of the entire system as compact photonic chip will be the major research focus and holds the key role for future developments.
Citation
Lam Anh Bui, "A Review of Photonic Generation of Arbitrary Microwave Waveforms," Progress In Electromagnetics Research B, Vol. 75, 1-12, 2017.
doi:10.2528/PIERB17011201
References

1. Bolea, M., J. Mora, B. Ortega, and J. Capmany, "Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats," Optics Express, Vol. 17, 5023-5032, 2009.
doi:10.1364/OE.17.005023

2. Chow, C., S. Huang, L. Yang, and C. Yeh, "Extended-reach access network with downstream radio-over-fiber (ROF) signal and upstream NRZ signal using orthogonal-WDM," Optics Express, Vol. 20, 16757-16762, 2012.
doi:10.1364/OE.20.016757

3. Pan, S. and J. Yao, "UWB-over-fiber communications: Modulation and transmission," Journal of Lightwave Technology, Vol. 28, 2445-2455, 2010.
doi:10.1109/JLT.2010.2043713

4. Goda, K., K. Tsia, and B. Jalali, "Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena," Nature, Vol. 458, 1145-1149, 2009.
doi:10.1038/nature07980

5. Hansen, H., "Standoff detection using millimeter and submillimeter wave spectroscopy," Proceedings of the IEEE, Vol. 95, 1691-1704, 2007.
doi:10.1109/JPROC.2007.900331

6. Miyakawa, M. and J. C. Bolomey, Non-invasive Thermometry of the Human Body, CRC Press, 1995.

7. Nashashibi, A. Y., K. Sarabandi, P. Frantzis, R. D. De Roo, and F. T. Ulaby, "An ultrafast wide-band millimeter-wave (MMW) polarimetric radar for remote sensing applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, 1777-1786, 2002.
doi:10.1109/TGRS.2002.802462

8. Capmany, J., J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, "Microwave photonic signal processing," Journal of Lightwave Technology, Vol. 31, 571-586, 2013.
doi:10.1109/JLT.2012.2222348

9. Capmany, J. and D. Novak, "Microwave photonics combines two worlds," Nature Photonics, Vol. 1, 319-330, 2007.
doi:10.1038/nphoton.2007.89

10. Yu, X., K. Wang, X. Zheng, and H. Zhang, "Incoherent photonic digital-to-analogue converter based on broadband optical source," Electronics Letters, Vol. 43, 1, 2007.
doi:10.1049/el:20073849

11. Han, Y. and B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations," Journal of Lightwave Technology, Vol. 21, 3085, 2003.
doi:10.1109/JLT.2003.821731

12. Lin, I. S., J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave and Wireless Components Letters, Vol. 15, 226-228, 2005.
doi:10.1109/LMWC.2005.845698

13. Jason, C., H. Yan, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEICE Transactions on Electronics, Vol. 86, 1226-1229, 2003.

14. Yao, J., "Photonic generation of microwave arbitrary waveforms," Optics Communications, Vol. 284, 3723-3736, 2011.
doi:10.1016/j.optcom.2011.02.069

15. Chen, L. R., "Photonic generation of chirped microwave and millimeter wave pulses based on optical spectral shaping and wavelength-to-time mapping in silicon photonics," Optics Communications, Vol. 373, 70-81, 2016.
doi:10.1016/j.optcom.2015.04.023

16. Fandino, J. S., P. Munoz, D. Domenech, and J. Capmany, "A monolithic integrated photonic microwave filter," Nature Photonics, Vol. 11, 124-129, Oct. 23, 2016.
doi:10.1038/nphoton.2016.233

17. Marpaung, D., C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, "Integrated microwave photonics," Laser & Photonics Reviews, Vol. 7, 506-538, 2013.
doi:10.1002/lpor.201200032

18. Shoeiby, M., A. Mitchell, and L. Bui, "Real time all optical correlator for serialized time encoded signals," Optics Communications, Vol. 338, 34-39, 2015.
doi:10.1016/j.optcom.2014.10.024

19. Sarkhosh, N., H. Emami, L. Bui, and A. Mitchell, "Reduced cost photonic instantaneous frequency measurement system," IEEE Photonics Technology Letters, Vol. 20, 1521-1523, 2008.
doi:10.1109/LPT.2008.927895

20. Emami, H., N. Sarkhosh, L. Bui, and A. Mitchell, "Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform," Optics Express, Vol. 16, 13707-13712, 2008.
doi:10.1364/OE.16.013707

21. Emami, H., N. Sarkhosh, L. A. Bui, and A. Mitchell, "Wideband RF photonic in-phase and quadrature-phase generation," Optics Letters, Vol. 33, 98-100, 2008.
doi:10.1364/OL.33.000098

22. Rashidinejad, A., Y. Li, and A. M. Weiner, "Recent advances in programmable photonic-assisted ultrabroadband radio-frequency arbitrary waveform generation," IEEE Journal of Quantum Electronics, Vol. 52, 1-17, 2016.
doi:10.1109/JQE.2015.2506987

23. Dezfooliyan, A. and A. M. Weiner, "Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping," Optics Express, Vol. 21, 22974-22987, 2013.
doi:10.1364/OE.21.022974

24. Weiner, A. M., "Ultrafast optical pulse shaping: A tutorial review," Optics Communications, Vol. 284, 3669-3692, 2011.
doi:10.1016/j.optcom.2011.03.084

25. Torres-Company, V., A. J. Metcalf, D. E. Leaird, and A. M. Weiner, "Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping," IEEE Photonics Technology Letters, Vol. 24, 891-893, 2012.
doi:10.1109/LPT.2012.2190054

26. Wang, J., H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, et al. "Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip," Nature Communications, Vol. 6, 2015.

27. Bazargani, H. P. and J. Azana, "Optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers," Optics Express, Vol. 23, 23450-23461, 2015.
doi:10.1364/OE.23.023450

28. Bolea, M., J. Mora, B. Ortega, and J. Capmany, "Photonic arbitrary waveform generation applicable to multiband UWB communications," Optics Express, Vol. 18, 26259-26267, 2010.
doi:10.1364/OE.18.026259

29. Rashidinejad, A. and A. M. Weiner, "Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability," Journal of Lightwave Technology, Vol. 32, 3383-3393, 2014.
doi:10.1109/JLT.2014.2331491

30. Li, Y., A. Dezfooliyan, and A. M. Weiner, "Photonic synthesis of spread spectrum radio frequency waveforms with arbitrarily long time apertures," Journal of Lightwave Technology, Vol. 32, 3580-3587, 2014.
doi:10.1109/JLT.2014.2320933

31. Mora, J., B. Ortega, A. Dıez, J. L. Cruz, M. V. Andres, J. Capmany, et al. "Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer," Journal of Lightwave Technology, Vol. 24, 2500, 2006.
doi:10.1109/JLT.2006.874652

32. Nguyen, T. G., M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, et al. "Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis," Optics Express, Vol. 23, 22087-22097, 2015.
doi:10.1364/OE.23.022087

33. Pasquazi, A., L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, et al. "Self-locked optical parametric oscillation in a CMOS compatible microring resonator: A route to robust optical frequency comb generation on a chip," Optics Express, Vol. 21, 13333-13341, 2013.
doi:10.1364/OE.21.013333

34. Soref, R., "The past, present, and future of silicon photonics," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, 1678-1687, 2006.
doi:10.1109/JSTQE.2006.883151

35. Inniss, D. and R. Rubenstein, Silicon Photonics: Fueling the Next Information Revolution, Morgan Kaufmann, 2016.

36. Rao, A., M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, et al. "Secondharmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon," Optics Express, Vol. 24, 29941-29947, 2016.
doi:10.1364/OE.24.029941

37. Zhang, W. and J. Yao, "Silicon-based on-chip electrically-tunable spectral shaper for continuously tunable linearly chirped microwave waveform generation," Journal of Lightwave Technology, Vol. 34, 4664-4672, 2016.
doi:10.1109/JLT.2016.2574125

38. Metcalf, A. J., H.-J. Kim, D. E. Leaird, J. A. Jaramillo-Villegas, K. A. McKinzie, V. Lal, et al. "Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering," Optics Express, Vol. 24, 23925-23940, 2016.
doi:10.1364/OE.24.023925

39. Qin, C., S. Feng, K. Shang, S. Pathak, B. Guan, M. Clements, et al. "Dynamic optical arbitrary waveform generation from a heterogeneously integrated InP/Si3N4 chip-scale module," Optical Fiber Communications Conference and Exhibition (OFC), 2016, 1-3, 2016.

40. Liu, W., M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, et al. "A fully reconfigurable photonic integrated signal processor," Nature Photonics, Vol. 10, 190-195, 2016.
doi:10.1038/nphoton.2015.281

41. Liao, S., Y. Ding, J. Dong, S. Yan, X. Wang, and X. Zhang, "Photonic arbitrary waveform generator based on Taylor synthesis method," Optics Express, Vol. 24, 24390-24400, 2016.
doi:10.1364/OE.24.024390

42. Asghari, M. H. and J. Azana, "Proposal and analysis of a reconfigurable pulse shaping technique based on multi-arm optical differentiators," Optics Communications, Vol. 281, 4581-4588, 2008.
doi:10.1016/j.optcom.2008.05.037

43. Chen, L. R., "Silicon photonics for microwave photonics applications," Journal of Lightwave Technology, Vol. 35, 824-835, 2017.
doi:10.1109/JLT.2016.2613861

44. Rius, M., M. Bolea, J. Mora, and J. Capmany, "Incoherent photonic processing for chirped microwave pulse generation," IEEE Photonics Technology Letters, Vol. 29, 7-10, 2017.
doi:10.1109/LPT.2016.2623360

45. Rius, M., M. Bolea, J. Mora, and J. Capmany, "Chirped waveform generation with envelope reconfigurability for pulse compression radar," IEEE Photonics Technology Letters, Vol. 28, 748-751, 2016.
doi:10.1109/LPT.2015.2509022

46. Li, Y. and A. M. Weiner, "Photonic-assisted error-free wireless communication with multipath precompensation covering 2–18 GHz," Journal of Lightwave Technology, Vol. 34, 4154-4161, 2016.
doi:10.1109/JLT.2016.2591438

47. Kim, H.-J., D. E. Leaird, and A. M. Weiner, "Rapidly tunable dual-comb RF photonic filter for ultrabroadband RF spread spectrum applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, 3351-3362, 2016.
doi:10.1109/TMTT.2016.2599162

48. Ma, C., Y. Jiang, G. Bai, Y. Tang, X. Qi, Z. Jia, et al. "Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach-Zehnder modulator," Optics Communications, Vol. 363, 207-210, 2016.
doi:10.1016/j.optcom.2015.10.054

49. Gao, Y., A. Wen, W. Liu, H. Zhang, and S. Xiang, "Photonic generation of triangular pulses based on phase modulation and spectrum manipulation," IEEE Photonics Journal, Vol. 8, 1-9, 2016.
doi:10.1109/JPHOT.2016.2522089

50. Li, J., J. Sun, W. Xu, T. Ning, L. Pei, J. Yuan, et al. "Frequency-doubled triangular-shaped waveform generation based on spectrum manipulation," Optics Letters, Vol. 41, 199-202, 2016.
doi:10.1364/OL.41.000199

51. Yuan, J., T. Ning, J. Li, L. Pei, H. Chen, C. Zhang, et al. "Investigation on quadrupling triangularshaped pulses generator with flexible repetition rate tunability," Optical and Quantum Electronics, Vol. 48, 1-12, 2016.
doi:10.1007/s11082-015-0274-3

52. Yuan, J., T. Ning, J. Li, H. Chen, Y. Li, and C. Zhang, "A photonic-assisted periodic triangular-shaped pulses generator based on FWM effect in an SOA," Optics Communications, Vol. 381, 450-456, 2016.
doi:10.1016/j.optcom.2015.11.067

53. Wu, T., Y. Jiang, C. Ma, Z. Jia, G. Bai, Y. Zi, et al. "Simultaneous triangular waveform signal and microwave signal generation based on dual-loop optoelectronic oscillator," IEEE Photonics Journal, Vol. 8, 1-10, 2016.

54. Zhou, P., F. Zhang, X. Ye, Q. Guo, and S. Pan, "Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser," IEEE Photonics Journal, Vol. 8, 1-9, 2016.