Vol. 75
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-05-24
A Numerical Study on Physical Characterizations of Microwave Scattering and Emission from Ocean Foam Layer
By
Progress In Electromagnetics Research B, Vol. 75, 91-109, 2017
Abstract
This paper presents a numerical study of microwave scattering and emission from a foam-covered ocean surface. The foam layer is modeled as an inhomogeneous layer with randomly rough air-foam and foam-seawater boundaries. Kelvin's Tetrakaidecahedron structure is selected as the skeleton for simulating the air bubbles in the foam layer. The electromagnetic characteristics of the foam layer, including absorption and scattering coefficients for both vertical and horizontal polarizations, are calculated using a multilevel volume UV fast algorithm to accelerate the numerical computation of three dimensional Maxwell's equations. The surface scattering at air-foam and foam-seawater interfaces is determined using the integral equation model (IEM). The microwave emission from the foam-covered ocean surface, which accounts for multiple incoherent interactions within the foam layer and between the foam and interfaces, is modeled using the vector radiative transfer approach and numerically solved using the matrix doubling method. The model analyses of volume scattering and absorption of the foam layer reveal that the volume scattering coefficient of a foam layer increases with increasing water fraction at all selected frequencies, and its polarization dependence is negligible at a water fraction less than 2%. At 10.8 GHz and 18 GHz, the H-polarized scattering coe±cient is smaller than the V-polarized scattering coefficient for a larger water fraction; the opposite occurs at 36.5 GHz, at which V polarized scattering is weaker compared to H-polarized scattering. The model analyses of emission from a foam-covered ocean surface reveal that the emissivities at all selected operating frequencies have similar dependencies with water fraction and frequency, and they exhibit different sensitivities to water fractions. Moreover, the emissivities at high operating frequencies exhibit higher sensitivities to water fractions than the lower ones.
Citation
Rui Jiang, Peng Xu, Kun-Shan Chen, Saibun Tjuatja, and Xiongbin Wu, "A Numerical Study on Physical Characterizations of Microwave Scattering and Emission from Ocean Foam Layer," Progress In Electromagnetics Research B, Vol. 75, 91-109, 2017.
doi:10.2528/PIERB17020801
References

1. Bettenhausen, M. H., C. K. Smith, R. M. Bevilacqua, N. Y. Wang, P. W. Gaiser, and S. Cox, "A nonlinear optimization algorithm for WindSat wind vector retrievals," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 3, 597-610, 2006.
doi:10.1109/TGRS.2005.862504

2. Andreas, E. L., "Spray-mediated enthalpy flux to the atmosphere and salt flux to the ocean in the high winds," J. Phys. Oceanogr., Vol. 40, No. 3, 608-619, 2010.
doi:10.1175/2009JPO4232.1

3. Smith, P. M., "The emissivity of sea foam at 19 and 37 GHz," IEEE Trans. Geosci. Remote Sens., Vol. 26, No. 5, 541-547, 1988.
doi:10.1109/36.7679

4. Stogryn "The emissivity of sea foam at microwave frequencies," J. Geophys. Res., Vol. 77, No. 9, 169-171, 1972.
doi:10.1029/JC077i009p01658

5. Rose, L. A., W. E. Asher, S. C. Resing, P. W. Gaiser, D. J. Dowgiallo, K. A. Horgan, G. Farquharson, and E. J. Knapp, "Radiometric measurements of microwave emissivity of foam," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 12, 2619-2625, 2002.
doi:10.1109/TGRS.2002.807006

6. Camps, A., M. Vall-llosera, R. Villarino, N. Reul, B. Chapron, I. Corbella, N. Duffo, F. Torres, J. J. Miranda, R. Sabia, A. Monerris, and R. Rodriguez, "The emissivity of foam-covered water surface at L-Band: Theoretical modeling and experimental results from the Frog 2003 field experiment," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 5, 925-937, 2005.
doi:10.1109/TGRS.2004.839651

7. Chen, D., L. Tsang, L. Zhou, S. C. Reising, W. E. Asher, L. A. Rose, K. H. Ding, and C. T. Chen, "Microwave emission and scattering of foam based on Monte Carlo simulations of dense media," IEEE Trans. Geosci. Remote Sens., Vol. 41, No. 4, 782-790, 2003.
doi:10.1109/TGRS.2003.810711

8. Raizer, V., "Macroscopic foam-spray models for ocean microwave radiometry," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 10, 3138-3144, 2007.
doi:10.1109/TGRS.2007.895981

9. Anguelova, M. D., "Complex dielectric constant of sea foam at microwave frequencies," J.Geophys. Res.: Oceans, Vol. 112, No. C8, 2008.

10. Anguelova, M. D. and P. M. Gaiser, "Microwave emissivity of sea foam layers with vertically inhomogeneous dielectric properties," Remote Sens. Environ., Vol. 139, No. 12, 81-96, 2013.
doi:10.1016/j.rse.2013.07.017

11. Yueh, S. H., "Modeling of wind direction signals in polarimetric sea surface brightness temperatures," IEEE Trans. Geosci. Remote Sens., Vol. 35, No. 6, 1400-1418, 1997.
doi:10.1109/36.649793

12. Weaire, D. and S. Hutzler, The Physics of Foam, Clarendon Press, Oxford, 1999.

13. Xu, P., L. Tsang, and D. Chen, "Application of the multilevel UV method to calculate microwave absorption and emission of the ocean foam with Kelvin’s Tetrakaidecahedron structure," Microw. Opt. Technol. Lett., Vol. 45, No. 5, 445-450, 2005.
doi:10.1002/mop.20849

14. Fung, A. K., Z. Li, and K. S. Chen, "Backscattering from a randomly rough dielectric surface," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 2, 335-359, Mar. 1992.
doi:10.1109/36.134085

15. Fung, A. K., Microwave Scattering and Emission Models and Its Applications, Artech House, Norwood, Massachusetts, 1994.

16. Tjuatja, S., A. K. Fung, and J. Bredow, "A scattering model for snow-covered sea ice," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 4, 804-810, 1992.
doi:10.1109/36.158876

17. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Vol. 3, Artech House, Norwood, Massachusetts, 1982.

18. Reul, N. and B. Chapron, "A model of sea-foam thickness distribution for passive microwave remote sensing applications," J. Geophys. Res., Vol. 108, No. C10, 894-895, 2003.
doi:10.1029/2003JC001887

19. Yaghjian, A. D., "Electric dyadic Green’s functions in the source region," Proc. IEEE, Vol. 68, No. 2, 248-263, 1980.
doi:10.1109/PROC.1980.11620

20. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Numerical Simulation, Wiley, New York, 2001.
doi:10.1002/0471224308

21. Fung, A. K. and H. J. Eom, "A theory of wave scattering from an inhomogeneous layer with an irregular interface," IEEE Trans. Antennas Propag., Vol. 29, No. 6, 899-910, 1981.
doi:10.1109/TAP.1981.1142679

22. Fung, A. K. and K. S. Chen, Microwave Scattering and Emission Models for Users, Artech House, Boston, 2010.

23. Fung, A. K., S. Tjuatja, J. W Bredow, and H. T. Chuah, "Dense medium phase and amplitude correction theory for spatially and electrically dense media," Proc. Int. Geosci. Remote Sens. Symp., Vol. 2, 1336-1338, 1995.

24. Sihvola, A., Electromagnetic Mixing Formulas and Applications, The Institute of Electrical Engineers, London, 1999.
doi:10.1049/PBEW047E

25. Klein, L. A. and C. T. Swift, "An improved model for the dielectric constant of sea water at microwave frequencies," IEEE Trans. Antennas Propag., Vol. 25, No. 1, 104-111, 1977.
doi:10.1109/TAP.1977.1141539

26. Anguelova, M. D. and P. W. Gaiser, "Skin depth at microwave frequencies of sea foam layers with vertical profile of void fraction," J. Geophys. Res.: Oceans, Vol. 116, No. C11, 2011.
doi:10.1029/2011JC007372

27. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 7th Ed., Academic Press, New York, 2007.

28. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast Efficient Algorithm in Computational Electromagnetics, Artech House, Boston, 2001.