Vol. 78
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-08-25
Modelling and Validation of Combined Active and Passive Microwave Remote Sensing of Agricultural Vegetation at L-Band
By
Progress In Electromagnetics Research B, Vol. 78, 91-124, 2017
Abstract
The distorted Born approximation (DBA) of volume scattering was previously combined with the numerical solution of Maxwell equations (NMM3D) for rough surfaces to calculate radar backscattering coefficients for the Soil Moisture Active Passive (SMAP) mission. The model results were validated with the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) data. In this paper, we extend the existing model to calculate the bistatic scattering coefficients for each of the three scattering mechanisms: volume, double bounce and surface scattering. Emissivities are calculated by integrating the bistatic scattering coefficients over the hemispherical solid angle. The backscattering coefficients and emissivities calculated using this approach form a consistent model for combined active and passive microwave remote sensing. This has the advantage that the active and passive microwave remote sensing models are founded on the same theoretical basis and hence allow the use of the same physical parameters such as crop density, plant height, stalk orientation, leaf radius, and surface roughness, amongst others. In this paper, this combined active and passive model is applied to four vegetation types to calculate both backscattering coefficients and brightness temperature: wheat, winter wheat, pasture and canola. This model uses a single-scattering and incoherent vegetation model, which is applicable for the vegetation fields studied in this paper but not suitable for vegetation types where collective scattering or multiple scattering effects are important. We demonstrate the use of the DBA/NMM3D for both active and passive using the same input parameters for matching active and passive coincident data. The model results are validated using coincident airborne Passive Active L-band System (PALS) low-altitude radiometer data and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data taken during the SMAPVEX12 field campaign. Results show an average root mean squared error (RMSE) of 1.04 dB and 1.21 dB for backscatter at VV and HH, respectively, and 4.65 K and 6.44 K for brightness temperature at V-pol and H-pol, respectively. The results are comparable to those from the tau-omega model which is commonly used to compute the brightness temperature, though the physical parameters used in this model are different from the empirically adjusted parameters used in the tau-omega model.
Citation
Huanting Huang, Tien-Hao Liao, Leung Tsang, Eni Gerald Njoku, Andreas Colliander, Thomas J. Jackson, Mariko Burgin, and Simon Yueh, "Modelling and Validation of Combined Active and Passive Microwave Remote Sensing of Agricultural Vegetation at L-Band," Progress In Electromagnetics Research B, Vol. 78, 91-124, 2017.
doi:10.2528/PIERB17060303
References

1. Entekhabi, D., E. G. Njoku, P. E. O’Neill, K. H. Kellogg, W. T. Crow, W. N. Edelstein, et al. "The Soil Moisture Active Passive (SMAP) mission," Proceedings of the IEEE, Vol. 98, 704-716, May 2010.
doi:10.1109/JPROC.2010.2043918

2. Jackson, T. J. and T. J. Schmugge, "Vegetation effects on the microwave emission of soils," Remote Sensing of Environment, Vol. 36, 203-212.
doi:10.1016/0034-4257(91)90057-D

3. Monerris, A. and T. Schmugge, "Soil moisture estimation using L-band radiometry," Advances in Geoscience and Remote Sensing, InTech, 2009.

4. Ulaby, F. T., D. G. Long, W. J. Blackwell, C. Elachi, A. K. Fung, C. Ruf, et al. Microwave Radar and Radiometric Remote Sensing, University of Michigan Press, 2014.

5. Entekhabi, D., S. Yueh, P. O’Neill, and K. Kellogg, SMAP Handbook, 400-1567, JPL Publication JPL, 2014.

6. Kerr, Y. H. and E. G. Njoku, "A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space," IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, 384-393, 1990.
doi:10.1109/36.54364

7. Jackson, T. and T. Schmugge, "Vegetation effects on the microwave emission of soils," Remote Sensing of Environment, Vol. 36, 203-212, 1991.
doi:10.1016/0034-4257(91)90057-D

8. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley, 1985.

9. Oh, Y., K. Sarabandi, and F. T. Ulaby, "Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, 1348-1355, Jun. 2002.
doi:10.1109/TGRS.2002.800232

10. Lang, R. H. and J. S. Sidhu, "Electromagnetic backscattering from a layer of vegetation — A discrete approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 21, 62-71, 1983.
doi:10.1109/TGRS.1983.350531

11. Huang, S. and L. Tsang, "Electromagnetic scattering of randomly rough soil surfaces based on numerical solutions of Maxwell equations in three-dimensional simulations using a hybrid UV/PBTG/SMCG method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, 4025-4035, 2012.
doi:10.1109/TGRS.2012.2189776

12. Kim, S. B., L. Tsang, J. T. Johnson, S. Huang, J. J. van Zyl, and E. G. Njoku, "Soil moisture retrieval using time-series radar observations over bare surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, 1853-1863, May 2012.
doi:10.1109/TGRS.2011.2169454

13. Kim, S.-B., M. Moghaddam, L. Tsang, M. Burgin, X. Xu, and E. G. Njoku, "Models of L-band radar backscattering coefficients over global terrain for soil moisture retrieval," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, 1381-1396, 2014.
doi:10.1109/TGRS.2013.2250980

14. McNairn, H., T. J. Jackson, G. Wiseman, S. Belair, A. Berg, P. Bullock, et al. "The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch calibration and validation of the SMAP soil moisture algorithms," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, 2784-2801, 2015.
doi:10.1109/TGRS.2014.2364913

15. Bolten, J. D., V. Lakshmi, and E. G. Njoku, "Soil moisture retrieval using the passive/active L- and S-band radar/radiometer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, 2792-2801, Dec. 2003.
doi:10.1109/TGRS.2003.815401

16. Bindlish, R., T. Jackson, R. J. Sun, M. Cosh, S. Yueh, and S. Dinardo, "Combined passive and active microwave observations of soil moisture during CLASIC," IEEE Geoscience and Remote Sensing Letters, Vol. 6, 644-648, Oct. 2009.
doi:10.1109/LGRS.2009.2028441

17. Ferrazzoli, P., G. Luzi, S. Paloscia, P. Pampaloni, G. Schiavon, and D. Solimini, "Comparison between the microwave emissivity and backscatter coefficient of crops," IEEE Transactions on Geoscience and Remote Sensing, Vol. 27, 772-778, Nov. 1989.
doi:10.1109/TGRS.1989.1398244

18. Guerriero, L., P. Ferrazzoli, and R. Rahmoune, "A synergyc view of L-band active and passive remote sensing of vegetated soil," 2012 12th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), 1-3, 2012.

19. Chauhan, N. S. and D. M. Levine, "Discrete scatter model for microwave radar and radiometer response to corn — Comparison of theory and data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, 416-426, Mar. 1994.
doi:10.1109/36.295056

20. Lang, R. H., "Scattering from a layer of discrete random medium over a random interface: application to microwave backscattering from forests," Waves in Random Media, Vol. 14, S359-S391, Apr. 2004.
doi:10.1088/0959-7174/14/2/014

21. Yueh, S. H., J. A. Kong, J. K. Jao, R. T. Shin, and T. Letoan, "Branching model for vegetation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, 390-402, Mar. 1992.
doi:10.1109/36.134088

22. Stiles, J. M. and K. Sarabandi, "Electromagnetic scattering from grassland Part I: A fully phasecoherent scattering model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, 339-348, Jan. 2000.
doi:10.1109/36.823929

23. Stiles, J. M., K. Sarabandi, and F. T. Ulaby, "Electromagnetic scattering from grassland Part II: Measurement and modelling results," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, 349-356, Jan. 2000.
doi:10.1109/36.823930

24. Ulaby, F. T., K. Sarabandi, K. Mcdonald, M. Whitt, and M. C. Dobson, "Michigan microwave canopy scattering model," International Journal of Remote Sensing, Vol. 11, 1223-1253, Jul. 1990.
doi:10.1080/01431169008955090

25. Tsang, L., J. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, John Wisley & Sons, ed: Inc, 2000.
doi:10.1002/0471224286

26. Liao, T.-H., S. B. Kim, S. R. Tan, L. Tsang, C. X. Su, and T. J. Jackson, "Multiple scattering effects with cyclical correction in active remote sensing of vegetated surface using vector radiative transfer theory," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, 1414-1429, Apr. 2016.
doi:10.1109/JSTARS.2015.2505638

27. Toure, A., K. P. B. Thomson, G. Edwards, R. J. Brown, and B. G. Brisco, "Adaptation of the mimics backscattering model to the agricultural context — Wheat and canola at L and C bands," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, 47-61, Jan. 1994.
doi:10.1109/36.285188

28. Huang, S. W., L. Tsang, E. G. Njoku, and K. S. Chan, "Backscattering coefficients, coherent reflectivities, and emissivities of randomly rough soil surfaces at L-band for SMAP applications based on numerical solutions of maxwell equations in three-dimensional simulations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, 2557-2568, Jun. 2010.
doi:10.1109/TGRS.2010.2040748

29. Njoku, E. G. and D. Entekhabi, "Passive microwave remote sensing of soil moisture," Journal of Hydrology, Vol. 184, 101-–129, Oct. 1, 1996.
doi:10.1016/0022-1694(95)02970-2

30. Colliander, A., E. G. Njoku, T. J. Jackson, S. Chazanoff, H. McNairn, and J. Powers, "Retrieving soil moisture for non-forested areas using PALS radiometer measurements in SMAPVEX12 field campaign," Remote Sensing of Environment, Vol. 184, 86-100, Oct. 2016.
doi:10.1016/j.rse.2016.06.001

31. Hensley, S., K. Wheeler, G. Sadowy, C. Jones, S. Shaffer, H. Zebker, et al. "The UAVSAR instrument: Description and first results," 2008 IEEE Radar Conference, Vol. 1–4, 827-832, 2008.

32. Mladenova, I. E., T. J. Jackson, R. Bindlish, and S. Hensley, "Incidence angle normalization of radar backscatter data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, 1791-1804, Mar. 2013.
doi:10.1109/TGRS.2012.2205264

33. Colliander, A., T. Jackson, H. McNairn, S. Chazanoff, S. Dinardo, B. Latham, et al. "Comparison of airborne Passive and Active L-band System (PALS) brightness temperature measurements to SMOS observations during the SMAP Validation Experiment 2012 (SMAPVEX12)," IEEE Geoscience and Remote Sensing Letters, Vol. 12, 801-805, Apr. 2015.
doi:10.1109/LGRS.2014.2362889

34. Jester, W. and A. Klik, "Soil surface roughness measurement — Methods, applicability, and surface representation," Catena, Vol. 64, 174-192, Dec. 30, 2005.
doi:10.1016/j.catena.2005.08.005

35. Rowlandson, T. L., A. A. Berg, P. R. Bullock, E. R. Ojo, H. McNairn, G. Wiseman, et al. "Evaluation of several calibration procedures for a portable soil moisture sensor," Journal of Hydrology, Vol. 498, 335-344, Aug. 19, 2013.
doi:10.1016/j.jhydrol.2013.05.021

36. Cosh, M. H., T. J. Jackson, R. Bindlish, J. S. Famiglietti, and D. Ryu, "Calibration of an impedance probe for estimation of surface soil water content over large regions," Journal of Hydrology, Vol. 311, 49-58, Sep. 15, 2005.
doi:10.1016/j.jhydrol.2005.01.003

37. Ulaby, F. T. and M. A. Elrayes, "Microwave dielectric spectrum of vegetation. 2. Dual-dispersion model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 25, 550-557, Sep. 1987.
doi:10.1109/TGRS.1987.289833

38. Huang, H., S.-B. Kim, L. Tsang, X. Xu, T.-H. Liao, T. J. Jackson, et al. "Coherent model of L-band radar scattering by soybean plants: Model development, evaluation, and retrieval," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 1, 272-284, Jan. 2016.
doi:10.1109/JSTARS.2015.2469717

39. Njoku, E. G. and J. A. Kong, "Theory for passive microwave remote-sensing of near-surface soilmoisture," Transactions-American Geophysical Union, Vol. 58, 554-554, 1977.

40. Huang, H., L. Tsang, E. G. Njoku, A. Colliander, T.-H. Liao, and K.-H. Ding, "Propagation and scattering by a layer of randomly distributed dielectric cylinders using monte carlo simulations of 3D Maxwell equations with applications in microwave interactions with vegetation," IEEE Access, Vol. 5, 11985-12003, 2017.
doi:10.1109/ACCESS.2017.2714620