1. ICNIRP "Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)," Health Physics, Vol. 74, No. 4, 494-522, 1998. Google Scholar
2. De Miguel-Bilbao, S., J. Garca, V. Ramos, and J. Blas, "Assessment of human body influence on exposure measurements of electric field in indoor enclosures," Bioelectromagnetics, Vol. 36, No. 2, 118-132, 2015.
doi:10.1002/BEM.21888 Google Scholar
3. De Miguel-Bilbao, S., V. Ramos, and J. Blas, "Assessment of polarization dependence of body shadow effect on dosimetry measurements in 2.4 GHz band," Bioelectromagnetics, Vol. 38, No. 4, 315-321, 2017.
doi:10.1002/bem.22030 Google Scholar
4. Krzysztof, G., Z. Patryk, and K. Jolanta, "The role of the location of personal exposimeters on the human body in their use for assessing exposure to the electromagnetic field in the radiofrequency range 982450 MHz and compliance analysis: Evaluation by virtual measurements," BioMed Research International, Vol. 2015, 2015. Google Scholar
5. Iskra, S., R. McKenzie, and I. Cosic, "Monte carlo simulations of the electric field close to the body in realistic environments for application in personal radiofrequency dosimetry," Radiation Protection Dosimetry, Vol. 147, No. 4, 517, 2011.
doi:10.1093/rpd/ncq580 Google Scholar
6. Gallastegi, M., M. Guxens, A. Jim’enez-Zabala, I. Calvente, M. Fern’andez, L. Birks, B. Struchen, M. Vrijheid, M. Estarlich, M. F. Fern’andez, M. Torrent, F. Ballester, J. J. Aurrekoetxea, J. Ibarluzea, D. Guerra, J. Gonz’alez, M. Roosli, and L. Santa-Marina, "Characterisation of exposure to non-ionising electromagnetic fields in the spanish inma birth cohort: Study protocol," BMC Public Health, Vol. 16, No. 1, 167, 2016.
doi:10.1186/s12889-016-2825-3 Google Scholar
7. Cansiz, M., T. Abbasov, M. Bahattin Kurt, and A. Recai Celik, "Mapping of radio frequency electromagnetic field exposure levels in outdoor environment and comparing with reference levels for general public health," J. Expos. Sci. Environ. Epidemiol., Original Article, Nov. 2016. Google Scholar
8. Neubauer, G., S. Cecil, W. Giczi, B. Petric, P. Preiner, J. Frhlich, and M. Rsli, "The association between exposure determined by radiofrequency personal exposimeters and human exposure: A simulation study," Bioelectromagnetics, Vol. 31, No. 7, 535-545, 2010.
doi:10.1002/bem.20587 Google Scholar
9. Roblin, C. and A. Sibille, "Measurement of a body-worn triaxial sensor for electromagnetic field and exposure assessment," 2014 8th European Conference on Antennas and Propagation (EuCAP), 2631-2635, Apr. 2014.
doi:10.1109/EuCAP.2014.6902362 Google Scholar
10. Blas, J., F. A. Lago, P. Fernndez, R. M. Lorenzo, and E. J. Abril, "Potential exposure assessment errors associated with body-worn RF dosimeters," Bioelectromagnetics, Vol. 28, No. 7, 573-576, 2007.
doi:10.1002/bem.20355 Google Scholar
11. Bahillo, A., J. Blas, P. Fernndez, R. M. Lorenzo, S. Mazuelas, and E. J. Abril, "E-field assessment errors associated with RF dosemeters for different angles of arrival," Radiation Protection Dosimetry, Vol. 132, No. 1, 51-56, 2008.
doi:10.1093/rpd/ncn275 Google Scholar
12. Iskra, S., R. McKenzie, and I. Cosic, "Personal, non-invasive dosimetry for radio-frequency human exposure assessment," 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2319-2322, Aug. 2007.
doi:10.1109/IEMBS.2007.4352790 Google Scholar
13. Thielens, A., H. De Clercq, S. Agneessens, J. Lecoutere, L. Verloock, F. Declercq, G. Vermeeren, E. Tanghe, H. Rogier, R. Puers, L. Martens, and W. Joseph, "Personal distributed exposimeter for radio frequency exposure assessment in real environments," Bioelectromagnetics, Vol. 34, No. 7, 563-567, 2013. Google Scholar
14. Weiland, T., "A discretization method for the solution of maxwells equations for six-component fields," Electronics and Communications AEU, Vol. 31, No. 3, 116-120, 1977. Google Scholar
15. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103 Google Scholar
16. Petoussi-Henss, N., M. Zankl, U. Fill, and D. Regulla, "The GSF family of voxel phantoms," Physics in Medicine and Biology, Vol. 47, No. 1, 89, 2002.
doi:10.1088/0031-9155/47/1/307 Google Scholar
17. Iskra, S., R. McKenzie, and I. Cosic, "Factors influencing uncertainty in measurement of electric fields close to the body in personal rf dosimetry," Radiation Protection Dosimetry, Vol. 140, No. 1, 25-33, 2010.
doi:10.1093/rpd/ncp309 Google Scholar
18. Kwate Kwate, R., B. Elmagroud, C. Taybi, D. Picard, and A. Ziyyat, "Interaction between human body and personal radiofrequency dosimeter: Effects of the metal plate presence," Proc. IEEE 14th Edition of the Mediterranean Microwave Symposium MMS14, Marrakech, Morocco, Dec. 12-14, 2014. Google Scholar
19. Kwate Kwate, R., B. Elmagroud, C. Taybi, V. Beauvois, Ch. Geuzaine, D. Picard, and A. Ziyyat, "On calibration of correction law for EMF measurement errors due to the proximity of the human body," Proc. IEEE 15th edition of the Mediterranean Microwave Symposium MMS15, 1-4, Lecce, Italy, 2015. Google Scholar
20. Elmagroud, B., R. Kwate Kwate, C. Taybi, D. Picard, and A. Ziyyat, "Electromagnetic exposure assessment for telecommunication equipements using RF dosimeter," Proc. IEEE 2nd International Conference on Information Technology for Organizations Development, IT4OD-2016, Fez, Morocco, 2016. Google Scholar