Vol. 82
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-10-09
Full Polarizability Matrix Extraction Formulas for Electrically Small Particles via Reflection/Transmission Coefficients
By
Progress In Electromagnetics Research B, Vol. 82, 93-114, 2018
Abstract
A class of rigorous formulas for the efficient extraction of the full polarizability matrix of electrically small particles is introduced in this paper. After the dipole approximation of the scatterer, under study, the latter is placed on a two-dimensional square array, illuminated by four normally incident plane waves, and eventually its polarizabilities are expressed in terms of induced dipole moments. Then, by applying an equivalent surface model for the array, the induced dipoles are calculated as a function of the reflection/transmission coefficients from the array. Lastly, the combination of the previous formulations leads to the final expressions for the polarizability matrix of the particle. In order to verify the featured methodology, the extracted polarizabilities are involved in radar cross section and total radiated power calculations for various incidences and are compared with their simulated counterparts.
Citation
Theodosios D. Karamanos, and Nikolaos V. Kantartzis, "Full Polarizability Matrix Extraction Formulas for Electrically Small Particles via Reflection/Transmission Coefficients," Progress In Electromagnetics Research B, Vol. 82, 93-114, 2018.
doi:10.2528/PIERB18071706
References

1. Silveirinha, M. G., "Generalized Lorentz-Lorentz formulas for microstructured materials," Phys. Rev. B, Vol. 76, No. 24, 245117, 2007.
doi:10.1103/PhysRevB.76.245117

2. Alu, A., "First-principles homogenization theory for periodic metamaterials," Phys. Rev. B, Vol. 84, No. 7, 075153, 2011.
doi:10.1103/PhysRevB.84.075153

3. Liu, X. X. and A. Alu, "Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach," Phys. Rev. B, Vol. 87, No. 23, 235136, 2013.
doi:10.1103/PhysRevB.87.235136

4. Karamanos, T. D., S. D. Assimonis, A. I. Dimitriadis, and N. V. Kantartzis, "Effective parameter extraction of 3D metamaterial arrays via first-principles homogenization theory," Photonics Nanostructures: Fundam. Appl., Vol. 12, No. 4, 291-297, 2014.
doi:10.1016/j.photonics.2014.04.005

5. Simovski, C. R., B. Sauviac, and S. L. Prosvirnin, "Homogenization of an array of S-shaped particles located on a dielectric interface," Progress In Electromagnetics Research, Vol. 39, 249-264, 2003.
doi:10.2528/PIER02093001

6. Mohamed, M. A., E. F. Kuester, M. Piket-May, and C. L. Holloway, "The field of an electric dipole and the polarizability of a conducting object embedded in the interface between dielectric materials," Progress In Electromagnetics Research B, Vol. 16, 1-20, 2009.
doi:10.2528/PIERB09050408

7. Dimitriadis, A. I., N. V. Kantartzis, T. D. Tsiboukis, and C. Hafner, "Generalized non-local surface susceptibility model and Fresnel coefficients for the characterization of periodic metafilms with bianisotropic scatterers," J. Comput. Phys., Vol. 281, 251-268, 2015.
doi:10.1016/j.jcp.2014.10.028

8. Andryieuski, A., A. V. Lavrinenko, M. Petrov, and S. A. Tretyakov, "Homogenization of metasurfaces formed by random resonant particles in periodical lattices," Phys. Rev. B, Vol. 93, No. 20, 205127, 2016.
doi:10.1103/PhysRevB.93.205127

9. Dimitriadis, A. I., T. D. Karamanos, N. V. Kantartzis, and T. D. Tsiboukis, "Effective-surface modeling of infinite periodic metascreens exhibiting the extraordinary transmission phenomenon," J. Opt. Soc. Am. B, Vol. 33, No. 3, 434-444, 2016.
doi:10.1364/JOSAB.33.000434

10. Alaee, R., M. Albooyeh, and C. Rockstuhl, "Theory of metasurface based perfect absorbers," J. Phys. D: Appl. Phys., Vol. 50, No. 50, 503002, 2017.
doi:10.1088/1361-6463/aa94a8

11. Sihvola, A. H., Electromagnetic Mixing Formulas and Applications, IET Publishers, Stevenage, 1999.
doi:10.1049/PBEW047E

12. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562

13. Mirmoosa, M., Y. Ra'di, V. Asadchy, C. Simovski, and S. Tretyakov, "Polarizabilities of nonreciprocal bianisotropic particles," Phys. Rev. Appl., Vol. 1, No. 3, 034005, 2014.
doi:10.1103/PhysRevApplied.1.034005

14. Terekhov, Y. E., A. V. Zhuravlev, and G. V. Belokopytov, "The polarizability matrix of split-ring resonators," Moscow Univ. Phys. Bull., Vol. 66, 254-259, 2011.
doi:10.3103/S0027134911030222

15. Yazdi, M. and N. Komjani, "Polarizability tensor calculation using induced charge and current distributions," Progress In Electromagnetics Research M, Vol. 45, 123-130, 2016.
doi:10.2528/PIERM15092502

16. Asadchy, V. S., I. A. Faniayeu, Y. Ra'di, and S. A. Tretyakov, "Determining polarizability tensors for an arbitrary small electromagnetic scatterer," Photonics Nanostructures: Fundam. Appl., Vol. 12, No. 4, 298-304, 2014.
doi:10.1016/j.photonics.2014.04.004

17. Alaee, R., M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, "Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications," Phys. Rev. B, Vol. 91, 115119, 2015.
doi:10.1103/PhysRevB.91.115119

18. Scher, A. D. and E. F. Kuester, "Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles," Metamaterials, Vol. 3, No. 1, 44-55, 2009.
doi:10.1016/j.metmat.2009.02.001

19. Karamanos, T. D., A. I. Dimitriadis, and N. V. Kantartzis, "Robust technique for the polarisability matrix retrieval of bianisotropic scatterers via their reflection and transmission coefficients," IET Microw. Antennas Propag., Vol. 8, No. 15, 1398-1407, 2014.
doi:10.1049/iet-map.2013.0551

20. Karamanos, T. and N. Kantartzis, "Polarizability matrix retrieval of a non-planar chiral particle through scattering parameter," Appl. Phys. A, Vol. 122, No. 4, 378, 2016.
doi:10.1007/s00339-016-9855-7

21. Jelinek, L. and J. Machac, "A polarizability measurement method for electrically small particles," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1051-1053, 2014.
doi:10.1109/LAWP.2014.2327152

22. Pulido-Mancera, L., P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, "Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling," Phys. Rev. B, Vol. 96, No. 23, 235402, 2017.
doi:10.1103/PhysRevB.96.235402

23. Liu, X.-X., Y. Zhao, and A. Alu, "Polarizability tensor retrieval for subwavelength particles of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2301-2310, 2016.
doi:10.1109/TAP.2016.2546958

24. Tai, C.-T., Dyadic Green Functions in Electromagnetic Theory, IEEE Press, Piscataway, 1994.

25. Belov, P. A. and C. R. Simovski, "Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers," Phys. Rev. E, Vol. 72, No. 2, 026615, 2005.
doi:10.1103/PhysRevE.72.026615

26. Scher, A. and E. Kuester, "Boundary effects in the electromagnetic response of a metamaterial in the case of normal incidence," Progress In Electromagnetics Research B, No. 14, 341-381, 2009.
doi:10.2528/PIERB09021107

27. Lee, S., B. Kang, H. Keum, N. Ahmed, J. Rogers, P. Ferreira, S. Kim, and B. Min, "Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing," Sci. Rep., Vol. 6, 27621, 2016.
doi:10.1038/srep27621

28. Serdyukov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Gordon and Breach, Amsterdam, 2001.

29. Withayachumnankul, W., C. Fumeaux, and D. Abbott, "Compact electric-LC resonators for metamaterials," Opt. Express, Vol. 18, No. 25, 25912-25921, 2010.
doi:10.1364/OE.18.025912

30. CST Microwave StudioTM Computer Simulation Technology, 2017.

31. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950

32. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Vol. 69, No. 1, 014402, 2004.
doi:10.1103/PhysRevB.69.014402

33. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, John Wiley & Sons, New York, 2011.

34. Sersic, I., C. Tuambilangana, T. Kampfrath, and A. F. Koenderink, "Magnetoelectric point scattering theory for metamaterial scatterers," Phys. Rev. B, Vol. 83, No. 24, 245102, 2011.
doi:10.1103/PhysRevB.83.245102

35. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.
doi:10.1126/science.1177031

36. Marques, R., L. Jelinek, and F. Mesa, "Negative refraction from balanced quasi-planar chiral inclusions," Microw. Opt. Technol. Lett., Vol. 49, No. 10, 2606-2609, 2007.
doi:10.1002/mop.22736

37. Wang, B., J. Zhou, T. Koschny, and C. M. Soukoulis, "Nonplanar chiral metamaterials with negative index," Appl. Phys. Lett., Vol. 94, No. 15, 151112, 2009.
doi:10.1063/1.3120565

38. Silveirinha, M. G., "Boundary conditions for quadrupolar metamaterials," New J. Phys., Vol. 16, No. 8, 083042, 2014.
doi:10.1088/1367-2630/16/8/083042

39. Yaghjian, A., "Boundary conditions for electric quadrupolar continua," Radio Sci., Vol. 49, No. 12, 1289-1299, 2014.
doi:10.1002/2014RS005530

40. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999.

41. Yaghjian, A. D., M. Silveirinha, A. Askarpour, and A. Alu, "Electric quadrupolarizability of a source-driven dielectric sphere," Progress In Electromagnetics Research B, Vol. 63, 95-106, 2015.
doi:10.2528/PIERB15052701

42. Alaee, A., C. Rockstuhl, and I. Fernandez-Corbaton, "An electromagnetic multipole expansion beyond the long-wavelength approximation," Opt. Commun., Vol. 407, 17-21, 2018.
doi:10.1016/j.optcom.2017.08.064

43. Volakis, J., Integral Equation Methods for Electromagnetics, IET Publishers, Stevenage, 2012.

44. Weber, W. and G. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B, Vol. 70, No. 12, 125429, 2004.
doi:10.1103/PhysRevB.70.125429

45. Scher, A. D., "Boundary effects in the electromagnetic response of a metamaterial using the point-dipole interaction model,", Ph.D. Thesis, University of Colorado at Boulder, Boulder, 2008.