1. Silveirinha, M. G., "Generalized Lorentz-Lorentz formulas for microstructured materials," Phys. Rev. B, Vol. 76, No. 24, 245117, 2007.
doi:10.1103/PhysRevB.76.245117 Google Scholar
2. Alu, A., "First-principles homogenization theory for periodic metamaterials," Phys. Rev. B, Vol. 84, No. 7, 075153, 2011.
doi:10.1103/PhysRevB.84.075153 Google Scholar
3. Liu, X. X. and A. Alu, "Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach," Phys. Rev. B, Vol. 87, No. 23, 235136, 2013.
doi:10.1103/PhysRevB.87.235136 Google Scholar
4. Karamanos, T. D., S. D. Assimonis, A. I. Dimitriadis, and N. V. Kantartzis, "Effective parameter extraction of 3D metamaterial arrays via first-principles homogenization theory," Photonics Nanostructures: Fundam. Appl., Vol. 12, No. 4, 291-297, 2014.
doi:10.1016/j.photonics.2014.04.005 Google Scholar
5. Simovski, C. R., B. Sauviac, and S. L. Prosvirnin, "Homogenization of an array of S-shaped particles located on a dielectric interface," Progress In Electromagnetics Research, Vol. 39, 249-264, 2003.
doi:10.2528/PIER02093001 Google Scholar
6. Mohamed, M. A., E. F. Kuester, M. Piket-May, and C. L. Holloway, "The field of an electric dipole and the polarizability of a conducting object embedded in the interface between dielectric materials," Progress In Electromagnetics Research B, Vol. 16, 1-20, 2009.
doi:10.2528/PIERB09050408 Google Scholar
7. Dimitriadis, A. I., N. V. Kantartzis, T. D. Tsiboukis, and C. Hafner, "Generalized non-local surface susceptibility model and Fresnel coefficients for the characterization of periodic metafilms with bianisotropic scatterers," J. Comput. Phys., Vol. 281, 251-268, 2015.
doi:10.1016/j.jcp.2014.10.028 Google Scholar
8. Andryieuski, A., A. V. Lavrinenko, M. Petrov, and S. A. Tretyakov, "Homogenization of metasurfaces formed by random resonant particles in periodical lattices," Phys. Rev. B, Vol. 93, No. 20, 205127, 2016.
doi:10.1103/PhysRevB.93.205127 Google Scholar
9. Dimitriadis, A. I., T. D. Karamanos, N. V. Kantartzis, and T. D. Tsiboukis, "Effective-surface modeling of infinite periodic metascreens exhibiting the extraordinary transmission phenomenon," J. Opt. Soc. Am. B, Vol. 33, No. 3, 434-444, 2016.
doi:10.1364/JOSAB.33.000434 Google Scholar
10. Alaee, R., M. Albooyeh, and C. Rockstuhl, "Theory of metasurface based perfect absorbers," J. Phys. D: Appl. Phys., Vol. 50, No. 50, 503002, 2017.
doi:10.1088/1361-6463/aa94a8 Google Scholar
11. Sihvola, A. H., Electromagnetic Mixing Formulas and Applications, IET Publishers, Stevenage, 1999.
doi:10.1049/PBEW047E
12. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562 Google Scholar
13. Mirmoosa, M., Y. Ra'di, V. Asadchy, C. Simovski, and S. Tretyakov, "Polarizabilities of nonreciprocal bianisotropic particles," Phys. Rev. Appl., Vol. 1, No. 3, 034005, 2014.
doi:10.1103/PhysRevApplied.1.034005 Google Scholar
14. Terekhov, Y. E., A. V. Zhuravlev, and G. V. Belokopytov, "The polarizability matrix of split-ring resonators," Moscow Univ. Phys. Bull., Vol. 66, 254-259, 2011.
doi:10.3103/S0027134911030222 Google Scholar
15. Yazdi, M. and N. Komjani, "Polarizability tensor calculation using induced charge and current distributions," Progress In Electromagnetics Research M, Vol. 45, 123-130, 2016.
doi:10.2528/PIERM15092502 Google Scholar
16. Asadchy, V. S., I. A. Faniayeu, Y. Ra'di, and S. A. Tretyakov, "Determining polarizability tensors for an arbitrary small electromagnetic scatterer," Photonics Nanostructures: Fundam. Appl., Vol. 12, No. 4, 298-304, 2014.
doi:10.1016/j.photonics.2014.04.004 Google Scholar
17. Alaee, R., M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, "Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications," Phys. Rev. B, Vol. 91, 115119, 2015.
doi:10.1103/PhysRevB.91.115119 Google Scholar
18. Scher, A. D. and E. F. Kuester, "Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles," Metamaterials, Vol. 3, No. 1, 44-55, 2009.
doi:10.1016/j.metmat.2009.02.001 Google Scholar
19. Karamanos, T. D., A. I. Dimitriadis, and N. V. Kantartzis, "Robust technique for the polarisability matrix retrieval of bianisotropic scatterers via their reflection and transmission coefficients," IET Microw. Antennas Propag., Vol. 8, No. 15, 1398-1407, 2014.
doi:10.1049/iet-map.2013.0551 Google Scholar
20. Karamanos, T. and N. Kantartzis, "Polarizability matrix retrieval of a non-planar chiral particle through scattering parameter," Appl. Phys. A, Vol. 122, No. 4, 378, 2016.
doi:10.1007/s00339-016-9855-7 Google Scholar
21. Jelinek, L. and J. Machac, "A polarizability measurement method for electrically small particles," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1051-1053, 2014.
doi:10.1109/LAWP.2014.2327152 Google Scholar
22. Pulido-Mancera, L., P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, "Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling," Phys. Rev. B, Vol. 96, No. 23, 235402, 2017.
doi:10.1103/PhysRevB.96.235402 Google Scholar
23. Liu, X.-X., Y. Zhao, and A. Alu, "Polarizability tensor retrieval for subwavelength particles of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2301-2310, 2016.
doi:10.1109/TAP.2016.2546958 Google Scholar
24. Tai, C.-T., Dyadic Green Functions in Electromagnetic Theory, IEEE Press, Piscataway, 1994.
25. Belov, P. A. and C. R. Simovski, "Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers," Phys. Rev. E, Vol. 72, No. 2, 026615, 2005.
doi:10.1103/PhysRevE.72.026615 Google Scholar
26. Scher, A. and E. Kuester, "Boundary effects in the electromagnetic response of a metamaterial in the case of normal incidence," Progress In Electromagnetics Research B, No. 14, 341-381, 2009.
doi:10.2528/PIERB09021107 Google Scholar
27. Lee, S., B. Kang, H. Keum, N. Ahmed, J. Rogers, P. Ferreira, S. Kim, and B. Min, "Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing," Sci. Rep., Vol. 6, 27621, 2016.
doi:10.1038/srep27621 Google Scholar
28. Serdyukov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Gordon and Breach, Amsterdam, 2001.
29. Withayachumnankul, W., C. Fumeaux, and D. Abbott, "Compact electric-LC resonators for metamaterials," Opt. Express, Vol. 18, No. 25, 25912-25921, 2010.
doi:10.1364/OE.18.025912 Google Scholar
30. CST Microwave StudioTM Computer Simulation Technology, 2017.
31. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950 Google Scholar
32. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Vol. 69, No. 1, 014402, 2004.
doi:10.1103/PhysRevB.69.014402 Google Scholar
33. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, John Wiley & Sons, New York, 2011.
34. Sersic, I., C. Tuambilangana, T. Kampfrath, and A. F. Koenderink, "Magnetoelectric point scattering theory for metamaterial scatterers," Phys. Rev. B, Vol. 83, No. 24, 245102, 2011.
doi:10.1103/PhysRevB.83.245102 Google Scholar
35. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.
doi:10.1126/science.1177031 Google Scholar
36. Marques, R., L. Jelinek, and F. Mesa, "Negative refraction from balanced quasi-planar chiral inclusions," Microw. Opt. Technol. Lett., Vol. 49, No. 10, 2606-2609, 2007.
doi:10.1002/mop.22736 Google Scholar
37. Wang, B., J. Zhou, T. Koschny, and C. M. Soukoulis, "Nonplanar chiral metamaterials with negative index," Appl. Phys. Lett., Vol. 94, No. 15, 151112, 2009.
doi:10.1063/1.3120565 Google Scholar
38. Silveirinha, M. G., "Boundary conditions for quadrupolar metamaterials," New J. Phys., Vol. 16, No. 8, 083042, 2014.
doi:10.1088/1367-2630/16/8/083042 Google Scholar
39. Yaghjian, A., "Boundary conditions for electric quadrupolar continua," Radio Sci., Vol. 49, No. 12, 1289-1299, 2014.
doi:10.1002/2014RS005530 Google Scholar
40. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999.
41. Yaghjian, A. D., M. Silveirinha, A. Askarpour, and A. Alu, "Electric quadrupolarizability of a source-driven dielectric sphere," Progress In Electromagnetics Research B, Vol. 63, 95-106, 2015.
doi:10.2528/PIERB15052701 Google Scholar
42. Alaee, A., C. Rockstuhl, and I. Fernandez-Corbaton, "An electromagnetic multipole expansion beyond the long-wavelength approximation," Opt. Commun., Vol. 407, 17-21, 2018.
doi:10.1016/j.optcom.2017.08.064 Google Scholar
43. Volakis, J., Integral Equation Methods for Electromagnetics, IET Publishers, Stevenage, 2012.
44. Weber, W. and G. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B, Vol. 70, No. 12, 125429, 2004.
doi:10.1103/PhysRevB.70.125429 Google Scholar
45. Scher, A. D., "Boundary effects in the electromagnetic response of a metamaterial using the point-dipole interaction model,", Ph.D. Thesis, University of Colorado at Boulder, Boulder, 2008. Google Scholar