1. Reneau, J. and R. Adhami, "Phase-coded LFMCW waveform analysis for short range measurement applications," IEEE Aerospace Conference, 1-6, Big Sky, MT, 2014. Google Scholar
2. Levanon, N., "CW alternatives to the coherent pulse," IEEE Transactions on Aerospace and Electronics Ystems, Vol. 29, No. 1, 250-254, 1993.
doi:10.1109/7.249132 Google Scholar
3. Skolnik, M., Radar Handbook, McGraw-Hill, New York, NY, 2008.
4. Rubio-Cidre, G., A. Badolato, L. ´Ubeda-Medina, B. M.-O. J. Grajal, and B. P. Dorta-Naranjo, "DDS-based signal-generation architecture comparison for an imaging radar at 300 GHz," IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 11, 3085-3098, November 2015.
doi:10.1109/TIM.2015.2440557 Google Scholar
5. Raghavendra, C. G., K. N. Bhat, M. P. R. Srivastsa, R. N. Murthy, P. V. Nayak, and N. N. S. S. R. K. Prasad, "A novel approach to generate OFDM radar signals," International Conference on Electrical, Electronics, Communication, Computer and Optimization Techniques (ICEECCOT), 141-145, 2016.
doi:10.1109/ICEECCOT.2016.7955203 Google Scholar
6. Levanon, N., "Multifrequency complementary phase-coded radar signal," IEEE Proceedings on Radar, Sonar and Navigation, Vol. 147, No. 6, 276-284, 2000.
doi:10.1049/ip-rsn:20000734 Google Scholar
7. Ellinger, J., Z. Zhang, M. W. Wu, and Zhiqiang, "Dual-use multi-carrier waveform for radar detection and communication," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 3, 1265-1278, 2017.
doi:10.1109/TAES.2017.2780578 Google Scholar
8. Y., Fu, Y. Li, Q. Huang, and K. Zhang, "Design and analysis of LFM/Barker RF stealth signal waveform," 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 591-595, 2016. Google Scholar
9. Kumar, K. R. and P. R. Kumar, "Reducing the grating lobes and main lobe width for increasing range resolution using phase and frequency modulated codes," Title of paper, book, or conference proceedings Electrical, Electronics, and Optimization Techniques (ICEEOT) --- 2016, 1453-1457, 2016.
doi:10.1109/ICEEOT.2016.7754923 Google Scholar
10. Xiong, G., X.-N. Yang, and H.-C. Zhao, "Pseudo-random code phase modulation and LFM combined pulse trains ranging system," 6th International Conference on ITS Telecommunication Proceedings, 148-151, 2006. Google Scholar
11. Ngwar, M. and J. Wright, "Phase-coded-linear-frequency-modulated waveform for low cost marine radar system," 2010 IEEE Radar Conference, 1144-1149, Washington D.C., 2010. Google Scholar
12. Seleym, A., "Complementary phase coded LFM waveform for SAR," Integrated Communications Navigation and Surveillance (ICNS) Conference, 4C3-1-4C3-5, 2016. Google Scholar
13. Zong, Z., J. Hu, and L. Zhu, "OPCDM-LFM waveform design for formation flying satellite radar system," IEEE CIE International Conference on Radar, 592-595, October 24-27, 2011. Google Scholar
14. Fu, J., G. Weim, and Q. Huang, "Barker coded excitation using LFM carrier for improving axial resolution in ultrasound imaging," Proceedings of 2013 ICME International Conference on Complex Medical Engineering, Beijing, China, 2013. Google Scholar
15. Richards, M. A., J. A. Scheer, and W. A. Holm, Principles of Modern Radar, SciTech Publishing Inc., Raleigh, 2010.
doi:10.1049/SBRA021E
16. Kumari, P., R. W. Heath, and S. A. Vorobyov, "Virtual pulse design for IEEE 802.11AD-based joint communication-radar," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3315-3319, Calgary, 2018. Google Scholar
17. Fioranelli, F., S. Salous, and X. Raimundo, "Frequency-modulated interrupted continuous wave as wall removal technique in through-the-wall imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 10, 6272-6283, 2014.
doi:10.1109/TGRS.2013.2295835 Google Scholar
18. Khomchuk, P., I. Stainvas, and I. Bilik, "Pedestrian motion direction estimation using simulated automotive MIMO radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 3, 1132-1145, 2016.
doi:10.1109/TAES.2016.140682 Google Scholar
19. Levanon, N. and B. Getz, "Comparison between linear FM and phase-coded CW radars," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 141, No. 4, 230-240, August 1994.
doi:10.1049/ip-rsn:19941233 Google Scholar
20. Rihaczek, A. W. and R. M. Golden, "Range sidelobe suppression for barker codes," IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-7, No. 6, 1087-1092, 1971.
doi:10.1109/TAES.1971.310209 Google Scholar
21. Ciuonzo, D., A. D. Maio, G. Foglia, and M. Piezzo, "Intrapulse radar-embedded communications via multiobjective optimization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 4, 2960-2974, 2015.
doi:10.1109/TAES.2015.140821 Google Scholar
22. Ciuonzo, D., A. D. Maio, G. Foglia, and M. Piezzo, "Pareto-theory for enabling covert intrapulse radar-embedded communications," IEEE Radar Conference (RadarCon), 0292-0297, Arlington, VA, 2015. Google Scholar
23. Ciuonzo, D. and P. S. Rossi, "Noncolocated time-reversal MUSIC: High-SNR distribution of null spectrum," IEEE Signal Processing Letters, Vol. 24, No. 4, 397-401, 2017.
doi:10.1109/LSP.2017.2661246 Google Scholar
24. Ciuonzo, D., V. Carotenuto, and A. D. Maio, "On multiple covariance equality testing with application to SAR change detection," IEEE Transactions on Signal Processing, Vol. 65, No. 19, 5078-5091, 2017.
doi:10.1109/TSP.2017.2712124 Google Scholar
25. Cheng, X., A. Aubry, D. Ciuonzo, A. D. Maio, and X. Wang, "Robust waveform and filter bank design of polarimetric radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 1, 370-384, 2017.
doi:10.1109/TAES.2017.2650619 Google Scholar
26. U.S. Department of Commerce, National Telecommunication and Information Adminstration, Office of Spectrum Management, "United States frequency allocations --- The radio spectrum,", January 2016, [Online]. Available: https://www.ntia.doc.gov/files/ntia/publications/january 2016 spectrum wall chart.pdf., [Accessed January 11, 2017]. Google Scholar
27. Pallavi, N., P. Anjaneyulu, P. B. Reddy, V.Mahendra, and R. Karthik, "Design and implementation of linear frequency modulated waveform using DDS and FPGA," 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), Vol. 2, 237-241, Coimbatore, India, 2017. Google Scholar
28. Ventura, J. F. I. and H. Russchenberg, "Improvement of the performance of FM-CW radar systems by using direct digital synthesizers: Comparison with voltage controlled oscillators," 2006 International Radar Symposium, 1-4, Krakow Poland, 2006. Google Scholar
29. Skolnik, M. I., "An introduction and overview of radar," Radar Handbook, 1.1-1.24, M. I. Skolnik, Ed., McGraw-Hill, New York, 2008. Google Scholar
30. Siddiq, K., R. J. Watson, S. R. Pennock, P. Avery, R. Poulton, and B. Dakin-Norris, "Phase noise analysis in FMCW radar systems," European Radar Conference (EuRAD), 501-504, Paris, 2015.
doi:10.1109/EuRAD.2015.7346347 Google Scholar
31. Tierney, J., C. Rader, and B. Gold, "A digital frequency synthesizer," IEEE Transactions on Audio and Electroacoustics, Vol. 19, No. 1, 48-57, 1971.
doi:10.1109/TAU.1971.1162151 Google Scholar
32. Vankka, J. and K. A. Halonen, Direct Digital Synthesizers: Theory Design and Applications, Springer-Verlag, New York, 2001.
doi:10.1007/978-1-4757-3395-2_6
33. Analog Devices, Inc. "Fundamentals of direct digital synthesis (DDS) (MT-085),", Analog Devices, Inc., Norwood, MA, 2009. Google Scholar
34. Andrews, G. V., C. T. M. Chang, J. D. Cayo, S. Sabin, W. A. White, and M. P. Harris, "Monolithic GaAs dual-channel digital chirp synthesiser chip," Electronics Letters, Vol. 27, No. 11, 905-906, May 23, 1991.
doi:10.1049/el:19910567 Google Scholar
35. Scheiblhofer, S., S. Schuster, and A. Stelzer, "High-speed FMCW radar frequency synthesizer with DDS based linearization," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 5, 397-399, May 2007.
doi:10.1109/LMWC.2007.895732 Google Scholar
36. Budge, M. and S. German, Basic Radar Analysis, Artech House, Norwood, MA, 2015.
37. Hovanessian, S. A., Radar System Design and Analysis, Artech House, Inc., Norwood, 1984.
38. Mahafza, B. R. and A. Z. Elsherbeni, MATLAB Simulations for Radar Systems Design, Chapman & Hall/CRC CRC Press LLC, Boca Raton, 2004.
39. Song, M., J. Lim, and S. Dong-Joon, "The velocity and range detection using the 2D-FFT scheme for automotive radars," 2014 4th IEEE International Conference on Network Infrastructure and Digital Content, 507-510, Beijing, 2014.
doi:10.1109/ICNIDC.2014.7000356 Google Scholar
40. Eugin, H. and J. Lee, "Hardware architecture design and implementation for FMCW radar signal processing algorithm," Proceedings of the 2014 Conference on Design and Architectures for Signal and Image Processing, 1-6, Madrid, 2014. Google Scholar
41. Swerling, P., "Probability of detection for fluctuating targets," IRE Transactions Information Theory, Vol. 6, No. 2, 269-308, 1960.
doi:10.1109/TIT.1960.1057561 Google Scholar