Vol. 82
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-11-14
Force and Hidden Momentum for Classical Microscopic Dipoles
By
Progress In Electromagnetics Research B, Vol. 82, 165-188, 2018
Abstract
The concept of hidden momentum is reviewed, and the first rigorous derivation from Maxwell's equations is provided for the electromagnetic force on electrically small perfect electric conductors of arbitrary shape in bandlimited but otherwise arbitrarily time-varying fields. It is proven for the Amperian magnetic dipoles of these perfect conductors that a "hidden-momentum" electromagnetic force exists that makes the force on these time varying Amperian magnetic dipoles equal to the force on magnetic-charge magnetic dipoles with the same time varying magnetic dipole moment in the same time varying externally applied fields. The exact Mie solution to the perfectly conducting sphere under plane-wave illumination is used to prove that the expressions for the total and hidden-momentum forces on the arbitrarily shaped electrically small perfect conductors correctly predict the forces on perfectly conducting spheres. Remarkably, it is found that the quadrupolar fields at the surface of the sphere are required to obtain the correct total force on the sphere even though the quadrupolar moments are negligible compared to the dipole moments as the electrical size of the sphere approaches zero.
Citation
Arthur D. Yaghjian, "Force and Hidden Momentum for Classical Microscopic Dipoles," Progress In Electromagnetics Research B, Vol. 82, 165-188, 2018.
doi:10.2528/PIERB18092007
References

1. Shockley, W. and R. P. James, "`Try simplest cases' discovery of `hidden momentum’ forces on ‘magnetic currents'," Phys. Rev. Letts., Vol. 18, 876-879, May 1967.
doi:10.1103/PhysRevLett.18.876

2. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

3. Hansen, T. B. and A. D. Yaghjian, Plane-wave Theory of Time-domain Fields: Near-field Scanning Applications, Wiley/IEEE Press, New York, 1999.
doi:10.1109/9780470545522

4. Calkin, M. G., "Linear momentum of the source of a static electromagnetic field," Am. J. Phys., Vol. 39, 513-516, May 1971.
doi:10.1119/1.1986204

5. Vaidman, L., "Torque and force on a magnetic dipole," Am. J. Phys., Vol. 58, 978-983, October 1990.
doi:10.1119/1.16260

6. Coleman, S. and J. H. Van Vleck, "Origin of `hidden momentum forces' on magnets," Phys. Rev., Vol. 171, 1370-1375, July 1968.
doi:10.1103/PhysRev.171.1370

7. Penfield, Jr., P. and H. A. Haus, Electrodynamics of Moving Media, M.I.T. Press, Cambridge, MA, 1967.

8. Griffiths, D. J., Introduction to Electrodynamics, 4th Ed., Cambridge University Press, 2017.

9. Boyer, T. H., "Classical interaction of a magnet and a point charge: The Shockley-James paradox," Phys. Rev. E, Vol. 91, 013201(1-11), 2015.
doi:10.1103/PhysRevE.91.013201

10. Boyer, T. H., "Interaction of a magnet and a point charge: Unrecognized internal electromagnetic momentum," Am. J. Phys., Vol. 83, 433-442, 2015.
doi:10.1119/1.4904040

11. De Groot, S. R. and L. G. Suttorp, Foundations of Electrodynamics, Amsterdam, North-Holland, 1972.

12. Maxwell, J. C., A Treatise on Electricity and Magnetism, Unabridged, 3rd Ed., Dover, New York, 1954; The Dover edition is an unabridged, slightly altered, republication of the third edition, published by the Clarendon Press in 1891.

13. Yaghjian, A. D., "Reflections on Maxwell’s treatise," Progress In Electromagnetics Research, Vol. 149, 217-249, November 2014; see also A.D. Yaghjian, ``An overview of Maxwell's Treatise,'' FERMAT Multimedia, Vol. 11, 2015.
doi:10.2528/PIER14092503

14. Yaghjian, A. D., "Classical power and energy relations for macroscopic dipolar continua derived from the microscopic Maxwell equations," Progress In Electromagnetics Research B, Vol. 71, 1-37, 2016.
doi:10.2528/PIERB16081901

15. Hnizdo, V., "Comment on `Torque and force on a magnetic dipole'," Am. J. Phys., Vol. 60, 279-281, March 1992.
doi:10.1119/1.16912

16. Furry, W. E., "Examples of momentum distributions in the electromagnetic field and in matter," Am. J. Phys., Vol. 37, 621-636, June 1969.
doi:10.1119/1.1975729

17. Yaghjian, A. D., Relativistic Dynamics of a Charged Sphere: Updating the Lorentz-Abraham Model, 2nd Ed., Springer, New York, 2006.
doi:10.1007/b98846

18. Phillips, H. B., Vector Analysis, John Wiley & Sons, New York, 1933.

19. Raab, R. E. and O. L. De Lange, Multipole Theory in Electromagnetism, Clarendon Press, Oxford, 2005.

20. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd Ed., Butterworth Heinemann, Oxford, UK, 1984.

21. Yaghjian, A. D., "Electric dyadic Green’s functions in the source region," Proc. IEEE, Vol. 68 & 69, 248–263 & 282–285, February 1980 & February 1981.

22. Haus, H. A. and J. R. Melcher, Electromagnetic Fields and Energy, Prentice Hall, Englewood Cliffs, NJ, 1989.