Vol. 84
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-04-02
Comparison of Algorithms and Input Vectors for Sea-Ice Classification with L-Band PolSAR Data
By
Progress In Electromagnetics Research B, Vol. 84, 1-21, 2019
Abstract
Two unsupervised methods, fuzzy c-means (FCM) and $k$-means, as well as three supervised methods, support vector machine (SVM), neural network (NN), and convolutional neural network (CNN), are applied to classify sea-ice type of first-year ice (FYI), multi-year ice (MYI) and open water, by using L-band polarimetric synthetic aperture radar (PolSAR) images in winter and advanced-melt phases, respectively. Different input vectors, pending on different scenarios, are also proposed to increase the accuracy rate. The efficacy of different algorithms in conjunction with different input vectors are analyzed and related to the underlying physical mechanisms.
Citation
Kai-Shiun Yang, and Jean-Fu Kiang, "Comparison of Algorithms and Input Vectors for Sea-Ice Classification with L-Band PolSAR Data," Progress In Electromagnetics Research B, Vol. 84, 1-21, 2019.
doi:10.2528/PIERB19010406
References

1. Lindsay, R. and A. Schweiger, "Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations," Cryosphere, Vol. 9, No. 1, 269-283, 2015.
doi:10.5194/tc-9-269-2015        Google Scholar

2. Serreze, M. C. and J. Stroeve, "Arctic sea ice trends, variability and implications for seasonal ice forecasting," Phil. Trans. R. Soc. A, Vol. 373, No. 2045, 2015.        Google Scholar

3. Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, "Arctic sea ice decline: Faster than forecast," Geophys. Res. Lett., Vol. 34, No. 9, 2007.        Google Scholar

4. Maslanik, J., C. Fowler, J. Stroeve, S. Drobot, J. Zwally, D. Yi, and W. Emery, "A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss," Geophys. Res. Lett., Vol. 34, No. 24, 2007.        Google Scholar

5. Arkett, M., D. Flett, R. De Abreu, P. Clemente-Colon, J. Woods, and B. Melchior, "Evaluating ALOS-PALSAR for ice monitoring --- What can L-band do for the North American ice service?," IEEE Int. Geosci. Remote Sensing Symp., Vol. 5, 2008.        Google Scholar

6. Howell, S. E. and J. Yackel, "A vessel transit assessment of sea ice variability in the western Arctic, 1969–2002: Implications for ship navigation," Canadian J. Remote Sensing, Vol. 30, No. 2, 205-215, 2004.        Google Scholar

7. Dierking, W. and T. Busche, "Sea ice monitoring by L-band SAR: An assessment based on literature and comparisons of JERS-1 and ERS-1 imagery," IEEE Trans. Geosci. Remote Sensing, Vol. 44, No. 4, 957-970, 2006.        Google Scholar

8. Zakhvatkina, N. Y., V. Y. Alexandrov, O. M. Johannessen, S. Sandven, and I. Y. Frolov, "Classification of sea ice types in ENVISAT synthetic aperture radar images," IEEE Trans. Geosci. Remote Sensing, Vol. 51, No. 5, 2587-2600, 2013.        Google Scholar

9. Canadian ice service digital archive-regional charts: History, accuracy, and caveats, Rep. 00-02, Ballicater Consulting Ltd, Ottawa, 2006.

10. Onstott, R. G., "SAR and scatterometer signatures of sea ice," Microwave Remote Sensing Sea Ice, Vol. 68, 73-104, 1992.        Google Scholar

11. Drunkwater, M., R. Hosseinmostafa, and P. Gogineni, "C-band backscatter measurements of winter sea-ice in the Weddell Sea, Antarctica," Int. J. Remote Sensing, Vol. 16, No. 17, 3365-3389, 1995.        Google Scholar

12. Geldsetzer, T., J. B. Mead, J. J. Yackel, R. K. Scharien, and S. E. Howell, "Surface-based polarimetric C-band scatterometer for field measurements of sea ice," IEEE Trans. Geosci. Remote Sensing, Vol. 45, No. 11, 3405-3416, 2007.        Google Scholar

13. Casey, J. A., S. E. Howell, A. Tivy, and C. Haas, "Separability of sea ice types from wide swath C-and L-band synthetic aperture radar imagery acquired during the melt season," Remote Sensing Environment, Vol. 174, 314-328, 2016.        Google Scholar

14. Barber, D. G., J. Yackel, and J. Hanesiak, "Sea ice, RADARSAT-1 and Arctic climate processes: A review and update," Canadian J. Remote Sensing, Vol. 27, No. 1, 51-61, 2001.        Google Scholar

15. Dammann, D. O., H. Eicken, A. R. Mahoney, E. Saiet, F. J. Meyer, C. John, et al. "Traversing sea ice- Linking surface roughness and ice trafficability through SAR polarimetry and interferometry," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sensing, Vol. 11, No. 2, 416-433, 2018.        Google Scholar

16. Isleifson, D., R. J. Galley, D. G. Barber, J. C. Landy, A. S. Komarov, and L. Shafai, "A study on the C-band polarimetric scattering and physical characteristics of frost flowers on experimental sea ice," IEEE Trans. Geosci. Remote Sensing, Vol. 52, No. 3, 1787-1798, 2014.        Google Scholar

17. Dierking, W., "Mapping of different sea ice regimes using images from Sentinel-1 and ALOS synthetic aperture radar," IEEE Trans. Geosci. Remote Sensing, Vol. 48, No. 3, 1045-1058, 2010.        Google Scholar

18. Johansson, A. M., C. Brekke, G. Spreen, and J. A. King, "X-, C-, and L-band SAR signatures of newly formed sea ice in Arctic leads during winter and spring," Remote Sensing Environment, Vol. 204, 162-180, 2018.        Google Scholar

19. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sensing, Vol. 34, No. 2, 498-518, 1996.        Google Scholar

20. Sandven, S., O. M. Johannessen, M. W. Miles, L. H. Pettersson, and K. Kloster, "Barents Sea seasonal ice zone features and processes from ERS 1 synthetic aperture radar: Seasonal Ice Zone Experiment 1992," J. Geophys. Res.: Oceans, Vol. 104, No. C7, 1999.        Google Scholar

21. Alexandrov, V., S. Sandven, K. Kloster, L. Bobylev, and L. Zaitsev, "Comparison of sea ice signatures in okean and RADARSAT radar images for the northeastern Barents sea," Canadian J. Remote Sensing, Vol. 30, No. 6, 882-892, 2004.        Google Scholar

22. Liu, H., H. Guo, and L. Zhang, "SVM-based sea ice classification using textural features and concentration from RADARSAT-2 Dual-Pol ScanSAR data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sensing, Vol. 8, No. 4, 1601-1613, 2015.        Google Scholar

23. Zhang, Z., H. Wang, F. Xu, and Y.-Q. Jin, "Complex-valued convolutional neural network and its application in polarimetric SAR image classification," IEEE Trans. Geosci. Remote Sensing, Vol. 55, No. 12, 7177-7188, 2017.        Google Scholar

24. Zhang, L., W. Ma, and D. Zhang, "Stacked sparse autoencoder in PolSAR data classification using local spatial information," IEEE Geosci. Remote Sensing Lett., Vol. 13, No. 9, 1359-1363, 2016.        Google Scholar

25. Lee, J.-S., M. R. Grunes, and R. Kwok, "Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution," Int. J. Remote Sensing, Vol. 15, No. 11, 2299-2311, 1994.        Google Scholar

26. Lee, J.-S., M. R. Grunes, T. L. Ainsworth, L.-J. Du, D. L. Schuler, and S. R. Cloude, "Unsupervised classification using polarimetric decomposition and the complex Wishart classifier," IEEE Trans. Geosci. Remote Sensing, Vol. 37, No. 5, 2249-2258, 1999.        Google Scholar

27. Kersten, P. R., J.-S. Lee, and T. L. Ainsworth, "Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering," IEEE Trans. Geosci. Remote Sensing, Vol. 43, No. 3, 519-527, 2005.        Google Scholar

28. Fan, J. and J. Wang, "Polarimetric SAR image segmentation based on spatially constrained kernel fuzzy C-means clustering," IEEE OCEANS, 2015.        Google Scholar

29. Doulgeris, A. P., S. N. Anfinsen, and T. Eltoft, "Automated non-gaussian clustering of polarimetric synthetic aperture radar images," IEEE Trans. Geosci. Remote Sensing, Vol. 49, No. 10, 3665-3676, 2011.        Google Scholar

30. Soh, L.-K. and C. Tsatsoulis, "Texture analysis of SAR sea ice imagery using gray level cooccurrence matrices," IEEE Trans. Geosci. Remote Sensing, Vol. 37, No. 2, 780-795, 1999.        Google Scholar

31. Singha, S., M. Johansson, N. Hughes, S. M. Hvidegaard, and H. Skourup, "Arctic sea ice characterization using spaceborne fully polarimetric L-, C-, and X-band SAR with validation by airborne measurements," IEEE Trans. Geosci. Remote Sensing, Vol. 56, No. 7, 3715-3734, 2018.        Google Scholar

32. Zhang, Y.-D. and L. N. Wu, "Crop classification by forward neural network with adaptive chaotic particle swarm optimization," Sensors, Vol. 11, 4721-4743, 2011, doi:10.3390/s110504721.        Google Scholar

33. Wang, S.-H., J. D. Sun, P. Phillips, G. H. Zhao, and Y.-D. Zhang, "Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units," J. Real-Time Image Proc., Vol. 15, 631-642, 2018.        Google Scholar

34. Watts, S., "Radar sea clutter: Recent progress and future challenges," IEEE Int. Conf. Radar, 2008.        Google Scholar

35. Fois, F., P. Hoogeboom, F. Le Chevalier, and A. Stoffelen, "Future ocean scatterometry: On the use of cross-polar scattering to observe very high winds," IEEE Trans. Geosci. Remote Sensing, Vol. 53, No. 9, 5009-5020, 2015.        Google Scholar

36. Valenzuela, G. R., "Theories for the interaction of electromagnetic and oceanic waves: A review," Boundary-Layer Meteorology, Vol. 13, No. 1–4, 61-85, 1978.        Google Scholar

37. Ulaby, F., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, from Theory to Applications, Vol. 3, Artech House, 1986.

38. Komarov, A. S., J. C. Landy, S. A. Komarov, and D. G. Barber, "Evaluating scattering contributions to C-band radar backscatter from snow-covered first-year sea ice at the winter-spring transition through measurement and modeling," IEEE Trans. Geosci. Remote Sensing, Vol. 55, No. 10, 5702-5718, 2017.        Google Scholar

39. Livingstone, C. E., K. P. Singh, and A. L. Gray, "Seasonal and regional variations of active/passive microwave signatures of sea ice," IEEE Trans. Geosci. Remote Sensing, No. 2, 159-173, 1987.        Google Scholar

40. http://iceweb1.cis.ec.gc.ca/Archive/?lang=en.

41. https://earth.esa.int/web/guest/data-access.

42. https://www.asf.alaska.edu.

43. http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm.

44. https://directory.eoportal.org/web/eoportal/satellite-missions/e/ers1.

45. Meadows, P., D. Esteban, and P. Mancini, "The ERS SAR performances: An update," Euro. Space Agency, Vol. 450, 79-84, 2000.        Google Scholar

46. Lee, J.-S. and E. Pottier, Polarimetric Radar Imaging: From Basics to Applications, CRC Press, 2009.

47. Freeman, A. and S. L. Durden, "A three-component scattering model for polarimetric SAR data," IEEE Trans. Geosci. Remote Sensing, Vol. 36, No. 3, 963-973, 1998.        Google Scholar

48. Minchew, B., C. E. Jones, and B. Holt, "Polarimetric analysis of backscatter from the Deepwater Horizon oil spill using L-band synthetic aperture radar," IEEE Trans. Geosci. Remote Sensing, Vol. 50, No. 10, 3812-3830, 2012.        Google Scholar

49. Lang, R., Y. Zhou, C. Utku, and D. Le Vine, "Accurate measurements of the dielectric constant of seawater at L band," Radio Science, Vol. 51, No. 1, 2-24, 2016.        Google Scholar

50. Joughin, I. R., D. P. Winebrenner, and D. B. Percival, "Probability density functions for multilook polarimetric signatures," IEEE Trans. Geosci. Remote Sensing, Vol. 32, No. 3, 562-574, 1994.        Google Scholar

51. Anfinsen, S. N. and T. Eltoft, "Application of the matrix-variate Mellin transform to analysis of polarimetric radar images," IEEE Trans. Geosci. Remote Sensing, Vol. 49, No. 6, 2281-2295, 2011.        Google Scholar

52. Nicolas, J.-M. and S. N. Anfinsen, "Introduction to second kind statistics: Application of logmoments and log-cumulants to the analysis of radar image distributions," Trait. Signal, Vol. 19, No. 3, 139-167, 2002.        Google Scholar

53. Tison, C., J.-M. Nicolas, F. Tupin, and H. Maıtre, "A new statistical model for Markovian classification of urban areas in high-resolution SAR images," IEEE Trans. Geosci. Remote Sensing, Vol. 42, No. 10, 2046-2057, 2004.        Google Scholar

54. Skrunes, S., C. Brekke, and A. P. Doulgeris, "Characterization of low-backscatter ocean features in dual-copolarization SAR using log-cumulants," IEEE Geosci. Remote Sensing Lett., Vol. 12, No. 4, 836-840, 2015.        Google Scholar

55. Derrode, S., G. Mercier, J.-M. Le Caillec, and R. Garello, "Estimation of sea-ice SAR clutter statistics from Pearson's system of distributions," IEEE Int. Geosci. Remote Sensing Symp., Vol. 1, 190-192, 2001.        Google Scholar

56. Hu, Y., J. Fan, and J. Wang, "Classification of PolSAR images based on adaptive nonlocal stacked sparse autoencoder," IEEE Geosci. Remote Sensing Lett., No. 99, 2018.        Google Scholar

57. Liu, C., W. Liao, H.-C. Li, K. Fu, and W. Philips, "Unsupervised classification of multilook polarimetric sar data using spatially variant Wishart mixture model with double constraints," IEEE Trans. Geosci. Remote Sensing, Vol. 56, No. 10, 5600-5613, 2018.        Google Scholar

58. Aldenhoff, W., C. Heuze, and L. E. Eriksson, "Comparison of ice/water classification in Fram strait from C-and L-band SAR imagery," Ann. Glaciology, Vol. 59, No. 76, 112-123, 2018.        Google Scholar

59. Badrinarayanan, V., A. Kendall, and R. Cipolla, "Segnet: A deep convolutional encoder-decoder architecture for image segmentation," IEEE Trans. Pattern Analysis Machine Intell., Vol. 39, No. 12, 2481-2495, 2017.        Google Scholar

60. Hsu, C.-W., C.-C. Chang, C.-J. Lin, et al. "A practical guide to support vector classification,", https://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf, 2003.        Google Scholar

61. Zheng, Y., B. Jeon, D. Xu, Q. Wu, and H. Zhang, "Image segmentation by generalized hierarchical fuzzy c-means algorithm," J. Intell. Fuzzy Syst., Vol. 28, No. 2, 961-973, 2015.        Google Scholar

62. Dabboor, M., J. Yackel, M. Hossain, and A. Braun, "Comparing matrix distance measures for unsupervised PolSAR data classification of sea ice based on agglomerative clustering," Int. J. Remote Sensing, Vol. 34, No. 4, 1492-1505, 2013.        Google Scholar

63. Arthur, D. and S. Vassilvitskii, "k-means++: The advantages of careful seeding," Annual ACMSIAM Symp. Discrete Algorithms, 1027-1035, 2007.        Google Scholar

64. Zhang, Y., M. Brady, and S. Smith, "Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm," IEEE Trans. Med. Imag., Vol. 20, No. 1, 45-57, 2001.        Google Scholar

65. Goodfellow, I., Y. Bengio, A. Courville, and Y. Bengio, Deep Learning, Ch. 9.11, MIT Press, 2016.