Vol. 84
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-07-07
Triple Two-Level Nested Array with Improved Degrees of Freedom
By
Progress In Electromagnetics Research B, Vol. 84, 135-151, 2019
Abstract
A triple two-level nested array (TTNA) configuration is proposed for direction-of-arrival (DOA) estimation of multiple time-space signals. The proposed TTNA consists of multiple two-level nested arrays, and the distance between two adjacent nested arrays is also given according to a nested array. As traditional nested arrays, it can generate a hole-free different co-array. Compared with some preexisting nested arrays, the proposed nested array can offer more degrees of freedom (DOFs). The closed-form expression of DOFs and the array configuration are given. Moreover, the detailed process for the construction of extended covariance matrix also is obtained. The simulation results show that the proposed method offers improved performance in the precision of DOA estimation due to the increase of virtual sensors.
Citation
Sheng Liu, Qiaoge Liu, Jing Zhao, and Ziqing Yuan, "Triple Two-Level Nested Array with Improved Degrees of Freedom," Progress In Electromagnetics Research B, Vol. 84, 135-151, 2019.
doi:10.2528/PIERB19031603
References

1. Moffet, A., "Minimum-redundancy linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 16, No. 2, 172-175, 1968.
doi:10.1109/TAP.1968.1139138

2. Vaidyanathan, P. P. and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Transactions on Signal Processing, Vol. 59, No. 2, 573-586, 2011.
doi:10.1109/TSP.2010.2089682

3. Qin, S., Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Transactions on Signal Processing, Vol. 63, No. 6, 1377-1390, 2015.
doi:10.1109/TSP.2015.2393838

4. Ren, S. W., W. J. Wang, and Z. H. Chen, "DOA estimation exploiting unified coprime array with multi-period subarrays," 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016.

5. Chen, M., L. Gan, and W. Wang, "Co-prime arrays with reduced sensors (CARS) for direction-of-arrival estimation," 2017 Sensor Signal Processing for Defence Conference (SSPD), London, UK, 2017.

6. Shi, J., G. Hu, X. Zhang, and Y. Xiao, "Symmetric sum coarray based co-prime MIMO configuration for direction of arrival estimation," AEU --- International Journal of Electronics and Communications, Vol. 94, 339-347, 2018.
doi:10.1016/j.aeue.2018.07.022

7. Shi, J., G. Hu, and X. Zhang, "Generalized co-prime MIMO radar for DOA estimation with enhanced degrees of freedom," IEEE Sensors Journal, Vol. 18, No. 3, 1203-1212, 2018.
doi:10.1109/JSEN.2017.2782746

8. Pal, P. and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Transactions on Signal Processing, Vol. 58, No. 8, 4167-4181, 2010.
doi:10.1109/TSP.2010.2049264

9. Yang, M., A. M. Haimovich, and B. Chen, "A new array geometry for DOA estimation with enhanced degrees of freedom," 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, 3041-3045, Shanghai, China, 2016.
doi:10.1109/ICASSP.2016.7472236

10. Yang, M., L. Sun, X. Yuan, and B. Chen, "Improved nested array with hole-free DCA and more degrees of freedom," Electron. Lett., Vol. 52, No. 25, 2068-2070, 2016.
doi:10.1049/el.2016.3197

11. Iizuka, Y. and K. Ichige, "Extension of nested array for large aperture and high degree of freedom," IEICE Communications Express, Vol. 6, No. 6, 381-386, 2017.
doi:10.1587/comex.2017XBL0031

12. Liu, J., Y. Zhang, Y. Lu, S. Ren, and S. Cao, "Augmented nested arrays with enhanced DOF and reduced mutual coupling," IEEE Transactions on Signal Processing, Vol. 65, No. 21, 5549-5563, 2017.
doi:10.1109/TSP.2017.2736493

13. Shi, J., G. Hu, X. Zhang, and H. Zhou, "Generalized nested array: Optimization for degrees of freedom and mutual coupling," IEEE Communications Letters, Vol. 22, No. 6, 1208-1211, 2018.
doi:10.1109/LCOMM.2018.2821672

14. Yang, M., A. M. Haimovich, and X. Yuan, "A unified array geometry composed of multiple identical subarrays with hole-free difference coarrays for underdetermined DOA estimation," IEEE Access, Vol. 6, 14238-14254, 2018.
doi:10.1109/ACCESS.2018.2813313

15. Huang, H., B. Liao, X. Wang, X. Guo, and J. Huang, "A new nested array configuration with increased degrees of freedom," IEEE Access, Vol. 6, 1490-1497, 2018.
doi:10.1109/ACCESS.2017.2779171

16. Liu, S., J. Zhao, D. Wu, and H. Cao, "Grade nested array with increased degrees of freedom for quasi-stationary signals," Progress In Electromagnetics Research LetterS, Vol. 80, 75-82, 2018.
doi:10.2528/PIERL18100604

17. Liu, S., L. Yang, and D. Li, "Subspace extension algorithm for 2D DOAestimation with L-shaped sparse array," Multidimensional Systems & Signal Processing, Vol. 28, 315-327, 2017.
doi:10.1007/s11045-016-0406-3

18. Ahmed, A., Y. D. Zhang, and B. Himed, "Effective nested array design for fourth-order cumulantbased DOA estimation," IEEE Radar Conference, 0998-1002, Seattle, WA, USA, 2017.

19. Zhang, L., S. Ren, and X. Li, "Generalized L-shaped nested array concept based on the fourth-order difference co-array," Sensors, Vol. 18, 8, 2018.

20. Yang, M., L. Sun, X. Yuan, and B. Chen, "A new nested MIMO array with increased degrees of freedom and hole-free difference coarray," IEEE Signal Processing Letters, Vol. 25, No. 1, 40-44, 2018.
doi:10.1109/LSP.2017.2766294

21. Liu, Q., B. Wang, X. Li, J. Tian, T. Cheng, and S. Liu, "An optimizing nested MIMO array with hole-free difference coarray," MATEC Web of Conferences, Vol. 232, EDP Sciences, 2018.

22. Morabito, A. F. and P. G. Nicolaci, "Optimal synthesis of shaped beams through concentric ring isophoric sparse arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 979-982, 2017.
doi:10.1109/LAWP.2016.2615762

23. Pal, P. and P. P. Vaidyanathan, "Coprime sampling and the MUSIC algorithm," Proceedings of Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (DSP/SPE), 289-294, Sedona, AZ, USA, 2011.

24. Gu, J. F., P. Wei, and H. M. Tai, "2-D direction-of-arrival estimation of coherent signals using cross-correlation matrix," Signal Processing, Vol. 88, 75-85, 2008.
doi:10.1016/j.sigpro.2007.07.013

25. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

26. Richard, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. Acous, Speech, and Signal Process., Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276