Vol. 84
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-06-14
Radiation Pattern Analysis and Modelling of Coplanar Vivaldi Antenna Element for Linear Array Pattern Evaluation
By
Progress In Electromagnetics Research B, Vol. 84, 79-96, 2019
Abstract
This paper reports an electric field approximation model of the Coplanar Vivaldi antenna on the E-plane. The study is conducted in three stages, i.e., (i) evaluating the impact of various geometrical parameters to the Vivaldi's element performance at different frequencies, (ii) modeling the electric field patterns, and (iii) applying the model to evaluate the linear total array pattern. The examination of the Coplanar Vivaldi element with fractional bandwidth of 133% in the 2-10 GHz band shows the individual roles of the antenna width, the tapered slot length, the opening width and the slope of the tapered slot in determining the VSWR, resistance, reactance and E-Field performance. The Vivaldi element should be designed with element width more than 0.5λ and less than λ to reach better performance of VSWR and E-field. The longer the tapered slot (>λ) with the high value of opening rate of tapered slot, the smaller the E-field. The E-field increases with increasing opening width of the tapered slot. Knowledge of the influence of each geometry parameter is then used as a reference in developing the E-field pattern approximation model of the Vivaldi element. The derivation of the Vivaldi approximation model is started from the pattern of a horn antenna because both antennas share a similar feature, i.e., the enclosure of the E-field propagation within a tapered slot resulting in a directional radiation pattern. The result of Coplanar Vivaldi modeling is verified against the results of electromagnetic computational simulation and measurement. The Vivaldi element model is useful for total array pattern analysis to save computation time and to provide flexibility in the evaluation of array design.
Citation
Nurhayati Nurhayati, Eko Setijadi, and Gamantyo Hendrantoro, "Radiation Pattern Analysis and Modelling of Coplanar Vivaldi Antenna Element for Linear Array Pattern Evaluation," Progress In Electromagnetics Research B, Vol. 84, 79-96, 2019.
doi:10.2528/PIERB19040502
References

1. Gibson, P. J., "The Vivaldi aerial," Proc. 9th European Microwave Conf., 101-105, 1979.

2. Natarajan, R., J. V. George, M. Kanagasabai, L. Lawrance, B. Moorthy, D. B. Rajendran, and M. Alsath, "Modified antipodal Vivaldi antenna for ultrawideband communication," IET Microwaves, Antennas & Propagation, Vol. 10, No. 4, 401-405, 2016.
doi:10.1049/iet-map.2015.0089

3. Ma, K., Z. Zhao, J. Wu, S. M. Ellis, and Z.-P. Nie, "A printed Vivaldi antenna with improved radiation patterns using two pairs of eye-shaped slots for UWB applications," Progress In Electromagnetics Research, Vol. 148, 63-71, 2014.
doi:10.2528/PIER14043003

4. Wang, P., H. Zhang, G. Wen, and Y. Sun, "Design of modified 6–18 GHz balanced antipodal Vivaldi antenna," Progress In Electromagnetics Research C, Vol. 25, 271-285, 2012.
doi:10.2528/PIERC11101202

5. Fioranelli, A., S. Salous, I. Ndip, and X. Raimundo, "Through-the-wall detection with gated FMCW signals using optimized patch-like and Vivaldi antennas," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 1106-1116, 2015.
doi:10.1109/TAP.2015.2389793

6. Yang, Y., Y. Wang, and A. E. Fathy, "Design of compact Vivaldi antenna arrays for UWB see through wall applications," Progress In Electromagnetics Research, Vol. 82, 401-418, 2008.
doi:10.2528/PIER08040601

7. Yan, J. B., S. Gogineni, B. C. Raga, and J. Brozena, "A dual-polarized 2–18 GHz Vivaldi array for airbone radar measurement of snow," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 781-785, Feb. 2016.
doi:10.1109/TAP.2015.2506734

8. Natarajan, R., M. Kanagasabai, and J. V. George, "Design of X-band Vivaldi antenna with low radar cross section," IET Microwaves, Antennas & Propagation, Vol. 10, No. 6, 651-655, 2016.
doi:10.1049/iet-map.2015.0585

9. He, S. H., W. Shan, C. Fan, Z. C. Mo, F. H. Yang, and J. H. Chen, "An improved Vivaldi antenna for vehicular wireless communication systems," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1505-1508, 2014.

10. Moosazadeh, M., S. Kharkovsky, J. T. Case, and B. Samali, "UWB antipodal Vivaldi antenna for microwave imaging of construction materials and structures," Microwave and Optical Technology Letters, Vol. 59, No. 6, 1259-1264, 2017.
doi:10.1002/mop.30509

11. Esmati, Z. and M. Moosazadeh, "Reflection and transmission of microwaves in reinforced concrete specimens irradiated by modified antipodal Vivaldi antenna," Microwave and Optical Technology Letters, Vol. 60, No. 9, 2113-2121, 2018.
doi:10.1002/mop.31307

12. Moosazadeh, M., "High-gain antipodal Vivaldi antenna surrounded by dielectric for wideband applications," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4349-4352, 2018.
doi:10.1109/TAP.2018.2840839

13. Nurhayati, G. Hendrantoro, T. Fukusako, and E. Setijadi, "Mutual coupling reduction for a UWB coplanar Vivaldi array by truncated and corrugated," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 12, 2284-2288, Dec. 2018.
doi:10.1109/LAWP.2018.2873115

14. Shin, J. and D. H. Schaubert, "A parameter study of stripline-fed Vivaldi notch-antenna arrays," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 879-886, May 1999.
doi:10.1109/8.774151

15. Chio, T. H. and D. H. Schaubert, "Parameter study and design of wide-band widescan dual-polarized tapered slot antenna arrays," IEEE Trans. Antennas Propag., Vol. 48, No. 6, 879-886, 2000.
doi:10.1109/8.865219

16. Nurhayati, G. Hendrantoro, and E. Setijadi, "Effect of Vivaldi element pattern on the uniform linear array pattern," IEEE International Conference on Communication, Networks and Satellite , 42-47, 2016.

17. Nurhayati, G. Hendrantoro, and E. Setijadi, "Total array pattern characteristics of coplanar Vivaldi antenna in E-plane with different element width for S and C band application," Progress In Electromagnetics Research Symposium Abstracts, 604-612, Singapore, Nov. 19–22, 2017.

18. Schaubert, D. H., "Wide-band phased arrays of Vivaldi notch antennas," International Conference on Antennas and Propagation, 6-12, Apr. 1997.

19. Mailloux, R. J., Phased Array Antenna Handbook, Artech House, Boston, London, 2005.

20. Reid, E. W., L. O. Balbuena, A. Ghadiri, and K. Moez, "A 324-element Vivaldi antenna array for radio astronomy instrumentation," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 241-249, Jan. 2016.

21. Kindt, R. W. and W. R. Pickles, "Ultrawideband all-metal flared-notch array radiator," IEEE Trans. Antennas Propag., Vol. 58, 3568-3575, Nov. 2010.

22. Vescovo, R., "Constrained and unconstrained synthesis of array factor for circular arrays," IEEE Trans. Antennas Propag., Vol. 43, 1405-1410, Dec. 1995.
doi:10.1109/8.475929

23. Florence, P. V. and G. S. N. Raju, "Optimization of linear dipole antenna array for sidelobe reduction and improved directivity using APSO algorithm," IOSR Journal of Electronics and Communication Engineering, Vol. 9, 17-27, 2014.
doi:10.9790/2834-09611727

24. Mohammadian, H., N. M. Martin, and D. W. Griffin, "A theoretical and experimental stufy of mutual coupling in microstrip antenna arrays," IEEE Trans. Antennas Propag., Vol. 37, 1217-1223, Oct. 1989.

25. Janaswamy, R. and D. H. Schaubert, "Analysis of the tapered slot antenna," IEEE Trans. Antennas Propag., Vol. 39, No. 9, 1058-1065, Sep. 1987.
doi:10.1109/TAP.1987.1144218

26. Janaswamy, R. and D. H. Schaubert, "Characteristic impedance of wide slotline on low-permitivity substrate," IEEE Trans. on Microwave Theory and Techniques, Vol. 34, 900-902, Sep. 1986.
doi:10.1109/TMTT.1986.1133465

27. Balanis, A. C., Antenna Theory Analysis and Design, John Wiley & Sons, Arizone State University, 1997.