Vol. 89
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2020-10-09
Theory of Electromagnetic Radiation in Nonlocal Metamaterials --- Part I: Foundations
By
Progress In Electromagnetics Research B, Vol. 89, 63-86, 2020
Abstract
Nonlocal radiating systems are new functional structures composed of externally applied currents radiating in nonlocal material domains, for example hot plasma, optically active media, or nanoengineered spatially dispersive metamaterials. We here develope the requisite mathematical foundations of the subject needed for investigating how such new generation of radiating systems may be analyzed at a very general level (Part I), while radiation pattern constructions for applications are provided in Part II. A key feature in our approach is the adoption of a fully-fledged momentum space perspective, where the spacetime Fourier transform method is exploited to derive, analyze, and understand how externally-controlled currents embedded into nonlocal media radiate. In particular, we avoid working in the spatio-temporal domain popular in conventional local radiation theory. Instead, we focus on the basic but nontrivial problem of infinite generic (anisotropic or isotropic) homogeneous nonlocal domain excited by an external source and investigate this structure in depth by deriving the dyadic Green's functions of nonlocal media in momentum space. Afterwords, the radiated energy in the far-zone is estimated directly in the spectral domain using a generalized momentum space energy density concept after the use of a suitable power theorem. The derived expressions of the radiation power pattern of the source can be computed analytically provided that the medium dielectric functions and the dispersion relation data of the nonlocal metamaterial are available. Detailed examples and applications of the theory and its algorithm are given in Part II of the present paper.
Citation
Said Mikki, "Theory of Electromagnetic Radiation in Nonlocal Metamaterials --- Part I: Foundations," Progress In Electromagnetics Research B, Vol. 89, 63-86, 2020.
doi:10.2528/PIERB20043010
References

1. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, 1970.

2. Agranovich, V. and V. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, Springer Berlin HeidelbergImprint Springer, 1984.
doi:10.1007/978-3-662-02406-5

3. Ginzburg, V. L., Theoretical Physics and Astrophysics, Pergamon Press, 1979.

4. Mikki, S. M. and A. A. Kishk, "Electromagnetic wave propagation in nonlocal media: Negative group velocity and beyond," Progress In Electromagnetics Research B, Vol. 14, 149-174, 2009.
doi:10.2528/PIERB09031911        Google Scholar

5. Mikki, S. M. and Y. M. M. Antar, "On electromagnetic radiation in nonlocal environments: Steps toward a theory of near field engineering," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-5, Apr. 2015.        Google Scholar

6. Mikki, S. M. and Y. M. M. Antar, New Foundations for Applied Electromagnetics: The Spatial Structure of Fields, Artech House, 2016.

7. Orlov, A., P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, "Engineered optical nonlocality in nanostructured metamaterials," Phys. Rev. B, Vol. 84, 045424, Jul. 2011.
doi:10.1103/PhysRevB.84.045424        Google Scholar

8. Wells, B. M., A. V. Zayats, and V. A. Podolskiy, "Nonlocal optics of plasmonic nanowire metamaterials," Phys. Rev. B, Vol. 89, 035111, Jan. 2014.
doi:10.1103/PhysRevB.89.035111        Google Scholar

9. Mikki, S. M. and A. A. Kishk, "Theory of optical scattering by carbon nanotubes," Microwave and Optical Technology Letters, Vol. 49, No. 10, 2360-2364, Jul. 2007.
doi:10.1002/mop.22768        Google Scholar

10. Mikki, S. M. and A. A. Kishk, "Electromagnetic scattering by multi-wall carbon nanotubes," Progress In Electromagnetics Research B, Vol. 17, 49-67, 2009.
doi:10.2528/PIERB09040605        Google Scholar

11. Mikki, S. M. and A. A. Kishk, "Effective medium theory for carbon nanotube composites and their potential applications as metamaterials," 2007 IEEE/MTT-S International Microwave Symposium, 1137-1140, Jun. 2007.
doi:10.1109/MWSYM.2007.380330        Google Scholar

12. Mikki, S. M. and A. A. Kishk, "Mean-field electrodynamic theory of aligned carbon nanotube composites," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1412-1419, May 2009.
doi:10.1109/TAP.2009.2016687        Google Scholar

13. Mikki, S. M. and A. A. Kishk, "An efficient algorithm for the analysis and design of carbon nanotube photonic crystals," Progress In Electromagnetics Research C, Vol. 83, 83-96, 2018.
doi:10.2528/PIERC18021001        Google Scholar

14. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 213902, Nov. 2002.        Google Scholar

15. Yuan, Y., L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. A. Kong, "Directive emission based on anisotropic metamaterials," Phys. Rev. A, Vol. 77, 053821, May 2008.
doi:10.1103/PhysRevA.77.053821        Google Scholar

16. Dong, Z.-G., H. Liu, T. Li, Z.-H. Zhu, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, "Modeling the directed transmission and reflection enhancements of the lasing surface plasmon amplification by stimulated emission of radiation in active metamaterials," Phys. Rev. B, Vol. 80, 235116, Dec. 2009.
doi:10.1103/PhysRevB.80.235116        Google Scholar

17. Halterman, K., S. Feng, and V. C. Nguyen, "Controlled leaky wave radiation from anisotropic epsilon near zero metamaterials," Phys. Rev. B, Vol. 84, 075162, Aug. 2011.
doi:10.1103/PhysRevB.84.075162        Google Scholar

18. Kort-Kamp, W. J. M., F. S. S. Rosa, F. A. Pinheiro, and C. Farina, "Spontaneous emission in the presence of a spherical plasmonic metamaterial," Phys. Rev. A, Vol. 87, 023837, Feb. 2013.
doi:10.1103/PhysRevA.87.023837        Google Scholar

19. Schulz, K. M., H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, "Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials," Phys. Rev. Lett., Vol. 117, 085503, Aug. 2016.
doi:10.1103/PhysRevLett.117.085503        Google Scholar

20. Nyman, M., V. Kivijarvi, A. Shevchenko, and M. Kaivola, "Generation of light in spatially dispersive materials," Phys. Rev. A, Vol. 95, 043802, Apr. 2017.
doi:10.1103/PhysRevA.95.043802        Google Scholar

21. Mikki, S. M., "Theory of electromagnetic radiation in nonlocal metamaterials — Part II: Applications," Progress In Electromagnetics Research, 2020 (accepted).        Google Scholar

22. Ilinskii, Y. A. and L. Keldysh, Electromagnetic Response of Material Media, Springer Science+Business Media, 1994.
doi:10.1007/978-1-4899-1570-2

23. Zeidler, E., Quantum Field Theory II: Quantum Electrodynamics, Springer, 2006.

24. Keller, O., Quantum Theory of Near-field Electrodynamics, Springer-Verlag Berlin Heidelberg, 2011.
doi:10.1007/978-3-642-17410-0

25. Kerns, D., "Reviews and abstracts—Plane wave scattering-matrix theory of antennas and antenna --- antenna interactions," IEEE Antennas and Propagation Society Newsletter, Vol. 21, No. 1, 11-11, Feb. 1979.
doi:10.1109/MAP.1979.27388        Google Scholar

26. Mikki, S. M. and Y. M. M. Antar, "A theory of antenna electromagnetic near field — Part I," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4691-4705, Dec. 2011.
doi:10.1109/TAP.2011.2165499        Google Scholar

27. Mikki, S. M. and Y. M. M. Antar, "A theory of antenna electromagnetic near field — Part II," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4706-4724, Dec. 2011.
doi:10.1109/TAP.2011.2165500        Google Scholar

28. Mikki, S. M. and Y. M. M. Antar, "A new technique for the analysis of energy coupling and exchange in general antenna systems," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5536-5547, Dec. 2015.
doi:10.1109/TAP.2015.2486804        Google Scholar

29. Sarkar, D., S. Mikki, K. V. Srivastava, and Y. M. M. Antar, "Dynamics of antenna reactive energy using time-domain IDM method," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1084-1093, Feb. 2019.
doi:10.1109/TAP.2018.2880047        Google Scholar

30. Mikki, S. M., D. Sarkar, and Y. M. M. Antar, "On localized antenna energy in electromagnetic radiation," Progress In Electromagnetics Research M, Vol. 79, 1-10, 2019.
doi:10.2528/PIERM18102910        Google Scholar

31. Mikki, S. M., A. M. Alzahed, and Y. M. M. Antar, "Radiation energy of antenna fields: Critique and a solution through recoverable energy," 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 1-4, Aug. 2017.        Google Scholar

32. Mikki, S. M. and Y. M. M. Antar, "Critique of antenna fundamental limitations," 2010 URSI International Symposium on Electromagnetic Theory, 122-125, Aug. 2010.
doi:10.1109/URSI-EMTS.2010.5637128        Google Scholar

33. Hansen, T. and A. Yaghjian, Plane-wave Theory of Time-domain Fields: Near-field Scanning Applications, IEEE Press, 1999.
doi:10.1109/9780470545522

34. Felsen, L., Radiation and Scattering of Waves, IEEE Press, 1994.
doi:10.1109/9780470546307

35. Chew, W. C., Waves and Fields in Inhomogenous Media, Wiley-IEEE, 1999.
doi:10.1109/9780470547052

36. Novotny, L., Principles of Nano-Optics, Cambridge University Press, 2012.
doi:10.1017/CBO9780511794193

37. Mikki, S. M. and Y. M. M. Antar, "On the fundamental relationship between the transmitting and receiving modes of general antenna systems: A new approach," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 232-235, 2012.        Google Scholar

38. Mikki, S. M. and Y. M. M. Antar, "The antenna current Green's function formalism — Part I," IEEE Trans. Antennas Propagat., Vol. 9, 4493-4504, Sep. 2013.        Google Scholar

39. Mikki, S. M. and Y. M. M. Antar, "The antenna current Green’s function formalism — Part II," IEEE Trans. Antennas Propagat., Vol. 9, 4505-4519, Sep. 2013.        Google Scholar

40. Brillouin, L., Wave Propagation in Periodic Structures, Electric Filters and Crystal Lattices, Dover Publications, 1953.

41. Mikki, S. M., "Exact derivation of the radiation law of antennas embedded into generic nonlocal metamaterials: A momentum-space approach," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, 2020.        Google Scholar

42. Mikki, S. M., "Quantum antenna theory for secure wireless communications," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-4, 2020.        Google Scholar

43. Mikki, S. M. and A. A. Kishk, "Nonlocal electromagnetic media: A paradigm for material engineering," Passive Microwave Components and Antennas, InTech, Apr. 2010.        Google Scholar

44. Brillouin, L., "Origin of radiation resistance," Radioelectricite, Vol. 3, 147-152, 1922.        Google Scholar

45. Landau, L. D., Electrodynamics of Continuous Media, Butterworth-Heinemann, 1984.

46. Mikki, S. M. and Y. M. M. Antar, "Aspects of generalized electromagnetic energy exchange in antenna systems: A new approach to mutual coupling," EuCap 2015, 1-5, Apr. 2015.        Google Scholar

47. Garrison, J. C. and R. Chiao, Quantum Optics, Oxford University Press, 2014.

48. Cho, K., "Reconstruction of Macroscopic Maxwell Equations: A Single Susceptibility Theory," Springer, 2018.        Google Scholar

49. Cho, K., Optical Response of Nanostructures: Microscopic Nonlocal Theory, Springer, 2003.

50. Mikki, S. M. and A. A. Kishk, "Derivation of the carbon nanotube susceptibility tensor using lattice dynamics formalism," Progress In Electromagnetics Research B, Vol. 9, 1-26, 2008.        Google Scholar

51. Mikki, S. M. and A. A. Kishk, "A symmetry-based formalism for the electrodynamics of nanotubes," Progress In Electromagnetics Research, Vol. 86, 111-134, 2008.        Google Scholar

52. Mikki, S. M. and A. A. Kishk, "Exact derivation of the dyadic Green's functions of carbon nanotubes using microscopic theory," 2007 IEEE Antennas and Propagation Society International Symposium, 4332-4335, Jun. 2007.        Google Scholar

53. Schwinger, J., et al., Classical Electrodynamics, Perseus Books, 1998.

54. Zeidler, E., "Quantum Field Theory I: Basics in Mathematics and Physics," Springer, 2009.        Google Scholar

55. Godement, R., Analysis II: Differential and integral Calculus, Fourier Series, Holomorphic Functions, Springer-Verlag, 2005.

56. Colton, D. and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," Springer, 2019.        Google Scholar

57. Fabrizio, M. and A. Morro, Electromagnetism of Continuous Media: Mathematical Modelling and Applications, Oxford University Press, 2003.

58. Sitenko, A. G., Electromagnetic Fluctuations in Plasma, Academic Press, 1967.

59. Korner, T. W., Vectors, Pure and Applied: A General Introduction to Linear Algebra, Cambridge University Press, 2013.

60. Mikki, S. M. and A. A. Kishk, "Electromagnetic wave propagation in dispersive negative group velocity media," 2008 IEEE MTT-S International Microwave Symposium Digest, 205-208, Jun. 2008.        Google Scholar

61. Toyozawa, Y., Optical Processes in Solids, Cambridge University Press, 2003.

62. Altland, A. and B. Simmons, Condensed Matter Field Theory, Cambridge University Press, 2010.

63. Melrose, D. B., Instabilities in Space and Laboratory Plasmas, Cambridge University Press, 1986.

64. Kulsrud, R. M., Plasma Physics for Astrophysics, Princeton University Press, 2005.

65. Fleishman, G., Cosmic Electrodynamics: Electrodynamics and Magnetic Hydrodynamics of Cosmic Plasmas, Springer, 2013.

66. Peratt, A., Physics of the Plasma Universe, Springer-Verlag, 2014.

67. Schelkunoff, S. A. and H. T. Friss, Antennas: Theory and Practice, Wiley, New York; Chapman & Hall, 1952.

68. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley, Inter-Science, 2015.

69. Geyi, W., Foundations of Applied Electrodynamics, Wiley, 2010.

70. Melrose, D. B. and R. C. McPhedran, Electromagnetic Processes in Dispersive Media: A Treatment Based on the Dielectric Tensor, Cambridge University Press, 1991.

71. Koks, D., Explorations in Mathematical Physics: The Concepts Behind an Elegant Language, Springer, 2006.

72. Appel, W., Mathematics for Physics and Physicists, Princeton University Press, 2007.

73. Papas, C., Theory of Electromagnetic Wave Propagation, Dover Publications, 1988.