1. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, 1970.
2. Agranovich, V. and V. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, Springer Berlin HeidelbergImprint Springer, 1984.
doi:10.1007/978-3-662-02406-5
3. Ginzburg, V. L., Theoretical Physics and Astrophysics, Pergamon Press, 1979.
4. Mikki, S. M. and A. A. Kishk, "Electromagnetic wave propagation in nonlocal media: Negative group velocity and beyond," Progress In Electromagnetics Research B, Vol. 14, 149-174, 2009.
doi:10.2528/PIERB09031911 Google Scholar
5. Mikki, S. M. and Y. M. M. Antar, "On electromagnetic radiation in nonlocal environments: Steps toward a theory of near field engineering," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-5, Apr. 2015. Google Scholar
6. Mikki, S. M. and Y. M. M. Antar, New Foundations for Applied Electromagnetics: The Spatial Structure of Fields, Artech House, 2016.
7. Orlov, A., P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, "Engineered optical nonlocality in nanostructured metamaterials," Phys. Rev. B, Vol. 84, 045424, Jul. 2011.
doi:10.1103/PhysRevB.84.045424 Google Scholar
8. Wells, B. M., A. V. Zayats, and V. A. Podolskiy, "Nonlocal optics of plasmonic nanowire metamaterials," Phys. Rev. B, Vol. 89, 035111, Jan. 2014.
doi:10.1103/PhysRevB.89.035111 Google Scholar
9. Mikki, S. M. and A. A. Kishk, "Theory of optical scattering by carbon nanotubes," Microwave and Optical Technology Letters, Vol. 49, No. 10, 2360-2364, Jul. 2007.
doi:10.1002/mop.22768 Google Scholar
10. Mikki, S. M. and A. A. Kishk, "Electromagnetic scattering by multi-wall carbon nanotubes," Progress In Electromagnetics Research B, Vol. 17, 49-67, 2009.
doi:10.2528/PIERB09040605 Google Scholar
11. Mikki, S. M. and A. A. Kishk, "Effective medium theory for carbon nanotube composites and their potential applications as metamaterials," 2007 IEEE/MTT-S International Microwave Symposium, 1137-1140, Jun. 2007.
doi:10.1109/MWSYM.2007.380330 Google Scholar
12. Mikki, S. M. and A. A. Kishk, "Mean-field electrodynamic theory of aligned carbon nanotube composites," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1412-1419, May 2009.
doi:10.1109/TAP.2009.2016687 Google Scholar
13. Mikki, S. M. and A. A. Kishk, "An efficient algorithm for the analysis and design of carbon nanotube photonic crystals," Progress In Electromagnetics Research C, Vol. 83, 83-96, 2018.
doi:10.2528/PIERC18021001 Google Scholar
14. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 213902, Nov. 2002. Google Scholar
15. Yuan, Y., L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. A. Kong, "Directive emission based on anisotropic metamaterials," Phys. Rev. A, Vol. 77, 053821, May 2008.
doi:10.1103/PhysRevA.77.053821 Google Scholar
16. Dong, Z.-G., H. Liu, T. Li, Z.-H. Zhu, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, "Modeling the directed transmission and reflection enhancements of the lasing surface plasmon amplification by stimulated emission of radiation in active metamaterials," Phys. Rev. B, Vol. 80, 235116, Dec. 2009.
doi:10.1103/PhysRevB.80.235116 Google Scholar
17. Halterman, K., S. Feng, and V. C. Nguyen, "Controlled leaky wave radiation from anisotropic epsilon near zero metamaterials," Phys. Rev. B, Vol. 84, 075162, Aug. 2011.
doi:10.1103/PhysRevB.84.075162 Google Scholar
18. Kort-Kamp, W. J. M., F. S. S. Rosa, F. A. Pinheiro, and C. Farina, "Spontaneous emission in the presence of a spherical plasmonic metamaterial," Phys. Rev. A, Vol. 87, 023837, Feb. 2013.
doi:10.1103/PhysRevA.87.023837 Google Scholar
19. Schulz, K. M., H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, "Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials," Phys. Rev. Lett., Vol. 117, 085503, Aug. 2016.
doi:10.1103/PhysRevLett.117.085503 Google Scholar
20. Nyman, M., V. Kivijarvi, A. Shevchenko, and M. Kaivola, "Generation of light in spatially dispersive materials," Phys. Rev. A, Vol. 95, 043802, Apr. 2017.
doi:10.1103/PhysRevA.95.043802 Google Scholar
21. Mikki, S. M., "Theory of electromagnetic radiation in nonlocal metamaterials — Part II: Applications," Progress In Electromagnetics Research, 2020 (accepted). Google Scholar
22. Ilinskii, Y. A. and L. Keldysh, Electromagnetic Response of Material Media, Springer Science+Business Media, 1994.
doi:10.1007/978-1-4899-1570-2
23. Zeidler, E., Quantum Field Theory II: Quantum Electrodynamics, Springer, 2006.
24. Keller, O., Quantum Theory of Near-field Electrodynamics, Springer-Verlag Berlin Heidelberg, 2011.
doi:10.1007/978-3-642-17410-0
25. Kerns, D., "Reviews and abstracts—Plane wave scattering-matrix theory of antennas and antenna --- antenna interactions," IEEE Antennas and Propagation Society Newsletter, Vol. 21, No. 1, 11-11, Feb. 1979.
doi:10.1109/MAP.1979.27388 Google Scholar
26. Mikki, S. M. and Y. M. M. Antar, "A theory of antenna electromagnetic near field — Part I," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4691-4705, Dec. 2011.
doi:10.1109/TAP.2011.2165499 Google Scholar
27. Mikki, S. M. and Y. M. M. Antar, "A theory of antenna electromagnetic near field — Part II," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4706-4724, Dec. 2011.
doi:10.1109/TAP.2011.2165500 Google Scholar
28. Mikki, S. M. and Y. M. M. Antar, "A new technique for the analysis of energy coupling and exchange in general antenna systems," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5536-5547, Dec. 2015.
doi:10.1109/TAP.2015.2486804 Google Scholar
29. Sarkar, D., S. Mikki, K. V. Srivastava, and Y. M. M. Antar, "Dynamics of antenna reactive energy using time-domain IDM method," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1084-1093, Feb. 2019.
doi:10.1109/TAP.2018.2880047 Google Scholar
30. Mikki, S. M., D. Sarkar, and Y. M. M. Antar, "On localized antenna energy in electromagnetic radiation," Progress In Electromagnetics Research M, Vol. 79, 1-10, 2019.
doi:10.2528/PIERM18102910 Google Scholar
31. Mikki, S. M., A. M. Alzahed, and Y. M. M. Antar, "Radiation energy of antenna fields: Critique and a solution through recoverable energy," 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 1-4, Aug. 2017. Google Scholar
32. Mikki, S. M. and Y. M. M. Antar, "Critique of antenna fundamental limitations," 2010 URSI International Symposium on Electromagnetic Theory, 122-125, Aug. 2010.
doi:10.1109/URSI-EMTS.2010.5637128 Google Scholar
33. Hansen, T. and A. Yaghjian, Plane-wave Theory of Time-domain Fields: Near-field Scanning Applications, IEEE Press, 1999.
doi:10.1109/9780470545522
34. Felsen, L., Radiation and Scattering of Waves, IEEE Press, 1994.
doi:10.1109/9780470546307
35. Chew, W. C., Waves and Fields in Inhomogenous Media, Wiley-IEEE, 1999.
doi:10.1109/9780470547052
36. Novotny, L., Principles of Nano-Optics, Cambridge University Press, 2012.
doi:10.1017/CBO9780511794193
37. Mikki, S. M. and Y. M. M. Antar, "On the fundamental relationship between the transmitting and receiving modes of general antenna systems: A new approach," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 232-235, 2012. Google Scholar
38. Mikki, S. M. and Y. M. M. Antar, "The antenna current Green's function formalism — Part I," IEEE Trans. Antennas Propagat., Vol. 9, 4493-4504, Sep. 2013. Google Scholar
39. Mikki, S. M. and Y. M. M. Antar, "The antenna current Green’s function formalism — Part II," IEEE Trans. Antennas Propagat., Vol. 9, 4505-4519, Sep. 2013. Google Scholar
40. Brillouin, L., Wave Propagation in Periodic Structures, Electric Filters and Crystal Lattices, Dover Publications, 1953.
41. Mikki, S. M., "Exact derivation of the radiation law of antennas embedded into generic nonlocal metamaterials: A momentum-space approach," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, 2020. Google Scholar
42. Mikki, S. M., "Quantum antenna theory for secure wireless communications," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-4, 2020. Google Scholar
43. Mikki, S. M. and A. A. Kishk, "Nonlocal electromagnetic media: A paradigm for material engineering," Passive Microwave Components and Antennas, InTech, Apr. 2010. Google Scholar
44. Brillouin, L., "Origin of radiation resistance," Radioelectricite, Vol. 3, 147-152, 1922. Google Scholar
45. Landau, L. D., Electrodynamics of Continuous Media, Butterworth-Heinemann, 1984.
46. Mikki, S. M. and Y. M. M. Antar, "Aspects of generalized electromagnetic energy exchange in antenna systems: A new approach to mutual coupling," EuCap 2015, 1-5, Apr. 2015. Google Scholar
47. Garrison, J. C. and R. Chiao, Quantum Optics, Oxford University Press, 2014.
48. Cho, K., "Reconstruction of Macroscopic Maxwell Equations: A Single Susceptibility Theory," Springer, 2018. Google Scholar
49. Cho, K., Optical Response of Nanostructures: Microscopic Nonlocal Theory, Springer, 2003.
50. Mikki, S. M. and A. A. Kishk, "Derivation of the carbon nanotube susceptibility tensor using lattice dynamics formalism," Progress In Electromagnetics Research B, Vol. 9, 1-26, 2008. Google Scholar
51. Mikki, S. M. and A. A. Kishk, "A symmetry-based formalism for the electrodynamics of nanotubes," Progress In Electromagnetics Research, Vol. 86, 111-134, 2008. Google Scholar
52. Mikki, S. M. and A. A. Kishk, "Exact derivation of the dyadic Green's functions of carbon nanotubes using microscopic theory," 2007 IEEE Antennas and Propagation Society International Symposium, 4332-4335, Jun. 2007. Google Scholar
53. Schwinger, J., et al., Classical Electrodynamics, Perseus Books, 1998.
54. Zeidler, E., "Quantum Field Theory I: Basics in Mathematics and Physics," Springer, 2009. Google Scholar
55. Godement, R., Analysis II: Differential and integral Calculus, Fourier Series, Holomorphic Functions, Springer-Verlag, 2005.
56. Colton, D. and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," Springer, 2019. Google Scholar
57. Fabrizio, M. and A. Morro, Electromagnetism of Continuous Media: Mathematical Modelling and Applications, Oxford University Press, 2003.
58. Sitenko, A. G., Electromagnetic Fluctuations in Plasma, Academic Press, 1967.
59. Korner, T. W., Vectors, Pure and Applied: A General Introduction to Linear Algebra, Cambridge University Press, 2013.
60. Mikki, S. M. and A. A. Kishk, "Electromagnetic wave propagation in dispersive negative group velocity media," 2008 IEEE MTT-S International Microwave Symposium Digest, 205-208, Jun. 2008. Google Scholar
61. Toyozawa, Y., Optical Processes in Solids, Cambridge University Press, 2003.
62. Altland, A. and B. Simmons, Condensed Matter Field Theory, Cambridge University Press, 2010.
63. Melrose, D. B., Instabilities in Space and Laboratory Plasmas, Cambridge University Press, 1986.
64. Kulsrud, R. M., Plasma Physics for Astrophysics, Princeton University Press, 2005.
65. Fleishman, G., Cosmic Electrodynamics: Electrodynamics and Magnetic Hydrodynamics of Cosmic Plasmas, Springer, 2013.
66. Peratt, A., Physics of the Plasma Universe, Springer-Verlag, 2014.
67. Schelkunoff, S. A. and H. T. Friss, Antennas: Theory and Practice, Wiley, New York; Chapman & Hall, 1952.
68. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley, Inter-Science, 2015.
69. Geyi, W., Foundations of Applied Electrodynamics, Wiley, 2010.
70. Melrose, D. B. and R. C. McPhedran, Electromagnetic Processes in Dispersive Media: A Treatment Based on the Dielectric Tensor, Cambridge University Press, 1991.
71. Koks, D., Explorations in Mathematical Physics: The Concepts Behind an Elegant Language, Springer, 2006.
72. Appel, W., Mathematics for Physics and Physicists, Princeton University Press, 2007.
73. Papas, C., Theory of Electromagnetic Wave Propagation, Dover Publications, 1988.