Research Center for Advanced Measurement and Characterization (RCAMC)
Japan
HomepageResearch Center for Advanced Measurement and Characterization (RCAMC)
Japan
Homepage1. Marsland, T. P. and E. Evans, "Dielectric measurements with an open-ended coaxial probe," IEEE Proceedings H — Microwaves, Antennas and Propagation, Vol. 134, 341-349, 1987.
doi:10.1049/ip-h-2.1987.0068 Google Scholar
2. Meaney, P. M., B. B. Williams, S. D. Geimer, A. B. Flood, and H. M. Swartz, "A coaxial dielectric probe technique for distinguishing tooth enamel from dental resin," Adv. Biomed. Eng. Res., Vol. 3, 8-17, 2015.
doi:10.14355/aber.2015.03.002 Google Scholar
3. Hagl, D. M., D. Popovic, S. C. Hagness, J. H. Booske, and M. Okoniewski, "Sensing volume of open-ended coaxial probes for dielectric characterization of breast tissue at microwave frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 1194-1206, 2003.
doi:10.1109/TMTT.2003.809626 Google Scholar
4. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
5. Sheen, N. I. and I. M. Woodhead, "An open-ended coaxial probe for broad-band permittivity measurement of agricultural products," J. of Agricult. Eng. Res., Vol. 74, 193-202, 1999.
doi:10.1006/jaer.1999.0444 Google Scholar
6. Grant, J. P., R. N. Clarke, G. T. Symm, and N. M. Spyrou, "A critical study of the open-ended coaxial line sensor technique for RF and microwave complex permittivity measurements," J. Phys. E Sci. Instrum., Vol. 22, 757-770, 1989.
doi:10.1088/0022-3735/22/9/015 Google Scholar
7. Baudry, D., A. Louis, and B. Mazari, "Characterization of the open ended coaxial probe used for near-field measurements in EMC applications," Progress In Electromagnetics Research, Vol. 60, 311-333, 2006.
doi:10.2528/PIER05112501 Google Scholar
8. Goodman, M. B. and S. R. Lockery, "Pressure polishing: a method for reshaping patch pipettes during fire polishing," J. Neurosci. Methods, Vol. 100, 13-15, 2000.
doi:10.1016/S0165-0270(00)00224-7 Google Scholar
9. Novak, P., J. Gorelik, U. Vivekananda, A. I. Shevchuk, Y. S. Ermolyuk, R. J. Bailey, A. J. Bushby, G. W. J. Moss, D. A. Rusakov, D. Klenerman, D. M. Kullmann, K. E. Volynski, and Y. E. Korchev, "Nanoscale targeted Patch-clamp recordings of functional presynaptic ion channels," Neuron, Vol. 79, 1067-1077, 2013.
doi:10.1016/j.neuron.2013.07.012 Google Scholar
10. Kodandaramaiah, S. B., G. T. Franzesi, B. Y. Chow, E. S. Boyden, and C. R. Forest, "Automated whole-cell patch-clamp electrophysiology of neurons in vivo," Nature Methods, Vol. 9, 585-587, 2012.
doi:10.1038/nmeth.1993 Google Scholar
11. Zhao, Z., L. Luan, X. Wei, H. Zhu, X. Li, S. Lin, J. J. Siegel, R. A. Chitwood, and C. Xie, "Nanoelectronic coating enabled versatile multifunctional neural probes," Nano Lett., Vol. 17, 4588-4595, 2017.
doi:10.1021/acs.nanolett.7b00956 Google Scholar
12. Gonzales, D. L., K. N. Badhiwala, D. G. Vercosa, B. W. Avants, Z. Liu, W. Zhong, and J. T. Robinson, "Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays," Nat. Nanotech., Vol. 12, 684-691, 2017.
doi:10.1038/nnano.2017.55 Google Scholar
13. Schuhmann, T. G. J., J. Yao, G. Hong, T. M. Fu, and C. M. Lieber, "Syringe-injectable electronics with a plug-and-play input/output interface," Nano Lett., Vol. 17, 5836-5842, 2017.
doi:10.1021/acs.nanolett.7b03081 Google Scholar
14. Azevedo, A. W. and R. I. Wilson, "Active mechanisms of vibration encoding and frequency filtering in central mechanosensory neurons," Neuron, Vol. 96, 1-15, 2017.
doi:10.1016/j.neuron.2017.09.004 Google Scholar
15. Hudspeth, A. J. and R. S. Lewis, "A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana," J. Physiol., Vol. 400, 275-297, 1988.
doi:10.1113/jphysiol.1988.sp017120 Google Scholar
16. Hutcheon, B. and Y. Yarom, "Resonance, oscillation and the intrinsic frequency preferences of neurons," Trends Neurosci., Vol. 23, 216-222, 2000.
doi:10.1016/S0166-2236(00)01547-2 Google Scholar
17. Lundstrom, B. N., M. Famulare, L. B. Sorensen, W. J. Spain, and A. L. Fairhall, "Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons," J. Comput. Neurosci., Vol. 27, 277-290, 2009.
doi:10.1007/s10827-009-0142-x Google Scholar
18. Ratte, S., M. Lankarany, Y. A. Rho, A. Patterson, and S. A. Prescott, "Subthreshold membrane currents confer distinct tuning properties that enable neurons to encode the integral or derivative of their input," Front. Cell. Neurosci., Vol. 8, No. 452, 1-15, 2015. Google Scholar
19. Jin, L., Z. Han, J. Platisa, J. R. Wooltorton, L. B. Cohen, and V. A. Pieribone, "Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe," Neuron, Vol. 75, 779-785, 2012.
doi:10.1016/j.neuron.2012.06.040 Google Scholar
20. Akemann, W., H. Mutoh, A. Perron, J. Rossier, and T. Knopfel, "Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins," Nat. Methods, Vol. 7, 643-649, 2010.
doi:10.1038/nmeth.1479 Google Scholar
21. Maheswari, U., H. Tatsumi, Y. Katayama, and M. Ohtsua, "Observation of subcellular nanostructure of single neurons with an illumination mode photon scanning tunneling microscope," Optics Communications, Vol. 120, 325-334, 1995.
doi:10.1016/0030-4018(95)00462-H Google Scholar
22. Wang, Y., H. Fathali, D. Mishra, T. Olsson, J. D. Keighron, K. P. Skibicka, and A.-S. Cans, "Counting the number of glutamate molecules in single synaptic vesicles," J. Am. Chem. Soc., Vol. 141, No. 44, 17507-17511, 2019.
doi:10.1021/jacs.9b09414 Google Scholar
23. Alanen, E., T. Lahtinen, and J. Nuutinen, "Variational formulation of open-ended coaxial line in contact with layered biological medium," IEEE Trans. on Biomed. Eng., Vol. 45, 1241-1248, 1998.
doi:10.1109/10.720202 Google Scholar
24. Meaney, P. M., A. Gregory, N. Epstein, and K. D. Paulsen, "Microwave open-ended coaxial dielectric probe: interpretation of the sensing volume revisited," BMC Med. Phys., Vol. 14, 1756-6649, 2014. Google Scholar
25. Liao, K., Y. Wu, C. Qian, and G. Du, "An accurate equivalent circuit method of open ended coaxial probe for measuring the permittivity of materials," Electrical Power Systems and Computer, LNEE, X. Wan (eds)., Springer, Berlin, Heidelberg, 2011. Google Scholar
26. Naughton, J. R., T. Connolly, J. A. Varela, J. Lundberg, M. J. Burns, T. C. Chiles, J. P. Christianson, and M. J. Naughton, "Shielded coaxial optrode arrays for neurophysiology," Front Neurosci., Vol. 10, 252, 2016. Google Scholar
27. Singh, P., et al., "A self-operating time crystal model of the human brain: Can we replace entire brain hardware with a 3D fractal architecture of clocks alone?," Information, Vol. 11, No. 5, 238, 2020.
doi:10.3390/info11050238 Google Scholar
28. Bandyopadhyay, A., "Chapter 7-A complete, integrated time crystal model of a human brain," Nanobrain. The Making of an Artificial Brain from a Time Crystal, 372, Taylor & Francis Inc. Imprint CRC Press Inc., Publication City/Country Bosa Roca, United States, 2020. Google Scholar
29. Saxena, K., et al., "Fractal, scale free electromagnetic resonance of a single brain extracted microtubule nanowire, a single tubulin protein and a single neuron," Fractal Fract, Vol. 4, No. 2, 11, 2020.
doi:10.3390/fractalfract4020011 Google Scholar
30. Ghosh, S. S. Sahu, L. Agrawal, T. Shiga, and A. Bandyopadhyay, "Inventing a coaxial atomic resolution patch clamp to study a single resonating protein complex and ultra-low power communication deep inside a living neuron cell," J. Int. Neurosci., Vol. 15, 403-433, 2016.
doi:10.1142/S0219635216500321 Google Scholar
31. Agrawal, L., S. Sahu, S. Ghosh, T. Shiga, D. Fujita, and A. Bandyopadhyay, "Inventing atomic resolution scanning dielectric microscopy to see a single protein complex operation live at resonance in a neuron without touching or adulterating the cell," J. Int. Neurosci., Vol. 15, 435-462, 2016.
doi:10.1142/S0219635216500333 Google Scholar
32. Sahu, S., S. Ghosh, D. Fujita, and A. Bandyopadhyay, "Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule," Sci. Rep., Vol. 4, No. 7303, 1-9, 2014. Google Scholar
33. Sahu, S., S. Ghosh, K. Hirata, D. Fujita, and A. Bandyopadhyay, "Multi-level memory switching properties of a single brain microtubule," Appl. Phys. Lett., Vol. 102, No. 123701, 1-4, 2013. Google Scholar
34. Sahu, S., S. Ghosh, B. Ghosh, K. Aswani, K. Hirata, D. Fujita, and A. Bandyopadhyay, "Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly," Biosensors and Bioelectronics, Vol. 47, 141-148, 2013.
doi:10.1016/j.bios.2013.02.050 Google Scholar
35. Dan, Ye., L. Jun, and T. Jau, "Jet propulsion by microwave air plasma in the atomosphere," AIP Advances, Vol. 10, 055002, 2020. Google Scholar
36. Jaun, Y., et al., "Prediction and experimental measurement of the electromagnetic thrust generated by a microwave thruster system," Chinese Physics B, Vol. 22, No. 5, 050301, 2013.
doi:10.1088/1674-1056/22/5/050301 Google Scholar
37. Yaduvanshi, R. S. and H. Parthasarathy, Chapter 1 --- Rectangular DRA fundamental background-rectangular dielectric resonator antenna — theory and design, Springer, 2016.
38. Behagi, A. A., "Chapter 4: Resonant circuits and filters — RF and microwave circuit design: A design approch using (ADS), advanced design system," Techno Search, 2015. Google Scholar