1. Chung, I., J.-H. Song, J. I. Jang, A. J. Freeman, and M. G. Kanatzidis, "Na2Ge2Se5: A highly nonlinear optical material," Journal of Solid State Chemistry, November 2012. Google Scholar
2. Rout, A., G. S. Boltaev, R. A. Ganeev, Y. Fu, S. K. Maurya, V. V. Kim, K. S. Rao, and C. Guo, "Nonlinear optical studies of gold nanoparticle films," Nanomaterials, Vol. 9, 291, 2019.
doi:10.3390/nano9020291 Google Scholar
3. Wu, R., J. Collins, L. T. Canham, and A. Kaplan, "The influence of quantum confinement on third-order nonlinearities in porous silicon thin films," Appl. Sci., Vol. 8, 1810, 2018.
doi:10.3390/app8101810 Google Scholar
4. Sakhno, O., P. Yezhov, V. Hryn, V. Rudenko, and T. Smirnova, "Optical and nonlinear properties of photonic polymer nanocomposites and holographic gratings modified with noble metal nanoparticles," Polymers, Vol. 12, 480, 2020.
doi:10.3390/polym12020480 Google Scholar
5. Varin, C., R. Emms, G. Bart, T. Fennel, and T. Brabec, "Explicit formulation of second and third order optical nonlinearity in the FDTD framework," Computer Physics Communications, Vol. 222, January 2018.
doi:10.1016/j.cpc.2017.09.018 Google Scholar
6. Zygiridis, T. T. and N. V. Kantartzis, "Finite-difference modeling of nonlinear phenomena in time-domain electromagnetics: A review," Applications of Nonlinear Analysis. Springer Optimization and Its Applications, Vol. 134, Rassias T. (eds), Springer, Cham., 2018. Google Scholar
7. Xu, L., M. Rahmani, D. Smirnova, K. ZangenehKamali, G. Zhang, D. Neshev, and A. E. Miroshnichenko, "Highly-efficient longitudinal second-harmonic generation from doublyresonant AlGaAs nanoantennas," Photonics, Vol. 5, 29, 2018.
doi:10.3390/photonics5030029 Google Scholar
8. De Ceglia, D., L. Carletti, M. A. Vincenti, C. De Angelis, and M. Scalora, "Second-harmonic generation in Mie-resonant GaAs nanowires," Appl. Sci., Vol. 9, 3381, 2019.
doi:10.3390/app9163381 Google Scholar
9. Rocco, D., M. A. Vincenti, and C. De Angelis, "Boosting second harmonic radiation from AlGaAs nanoantennas with epsilon-near-zero materials," Appl. Sci., Vol. 8, 2212, 2018.
doi:10.3390/app8112212 Google Scholar
10. Nguyen, D. T. T. and N. D. Lai, "Deterministic insertion of KTP nanoparticles into polymeric structures for efficient second-harmonic generation," Crystals, Vol. 9, 365, 2019.
doi:10.3390/cryst9070365 Google Scholar
11. Huang, Z., H. Lu, H. Xiong, Y. Li, H. Chen, W. Qiu, H. Guan, J. Dong, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, "Fano resonance on nanostructured lithium niobate for highly efficient and tunable second harmonic generation," Nanomaterials, Vol. 9, 69, 2019.
doi:10.3390/nano9010069 Google Scholar
12. Cheng, T., Y. Xiao, S. Li, X. Yan, X. Zhang, T. Suzuki, and Y. Ohishi, "Highly efficient second-harmonic generation in a tellurite optical fiber," Optics Letters, Vol. 44, No. 19, 2019.
doi:10.1364/OL.44.004686 Google Scholar
13. Kumar, S. and M. Sen, "High-gain, low-threshold and small-footprint optical parametric amplifier for photonic integrated circuits," J. Opt. Soc. Am. B, Vol. 35, 362-371, 2018.
doi:10.1364/JOSAB.35.000362 Google Scholar
14. APL Photonics, Vol. 4, 086102, 2019, https://doi.org/10.1063/1.5103272.
15. Milton, M. J. T., T. J. McIlveen, D. C. Hanna, and P. T. Woods, "A high-gain optical parametric amplifier tunable between 3.27 and 3.65 μm," Optics Communications, Vol. 93, No. 3–4, 186-190, 1992, ISSN 0030-4018.
doi:10.1016/0030-4018(92)90526-W Google Scholar
16. Wnuk, P., Y. Stepanenko, and C. Radzewicz, "High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier," Optics Express, Vol. 18, No. 8, 7911-7916, Apr. 2010.
doi:10.1364/OE.18.007911 Google Scholar
17. Ooi, K., D. Ng, T. Wang, et al. "Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge," Nat. Commun., Vol. 8, 13878, 2017.
doi:10.1038/ncomms13878 Google Scholar
18. Wei, X., Y. Peng, X. Luo, T. Zhou, J. Peng, Z. Nie, and J. Gao, "High-efficiency mid-infrared optical parametric amplifier with approximate uniform rectangular pump distribution," Proc. SPIE 10436, High-Power Lasers: Technology and Systems, Platforms, and Effects, 104360I, Oct. 26, 2017. Google Scholar
19. Asırım, O. E. and M. Kuzuoglu, "Super-gain optical parametric amplification in dielectric micro-resonators via BFGS algorithm-based non-linear programming," Appl. Sci., Vol. 10, 1770, 2020.
doi:10.3390/app10051770 Google Scholar
20. Asırım, O. E. and M. Kuzuoglu, "Enhancement of optical parametric amplification in micro-resonators via gain medium parameter selection and mean cavity wall reflectivity adjustment," Journal of Physics B: Atomic, Molecular and Optical Physics, Apr. 2020. Google Scholar
21. Coetzee, R. S., A. Zukauskas, J. M. Melkonian, and V. Pasiskevicius, "An efficient 2 μm optical parametric amplifier based on large-aperture periodically poled RB:KTP," Proc. SPIE 10562, International Conference on Space Optics — ICSO 2016, 105620L, Sep. 25, 2017. Google Scholar
22. Liu, X., R. Osgood, Y. Vlasov, et al. "Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides," Nature Photon, Vol. 4, 557-560, 2010.
doi:10.1038/nphoton.2010.119 Google Scholar
23. Gonzalez, M. and Y. Lee, "A study on parametric amplification in a piezoelectric MEMS device," Micromachines (Basel), Vol. 10, No. 1, 19, 2018.
doi:10.3390/mi10010019 Google Scholar
24. Al-Mahmoud, M., A. A. Rangelov, V. Coda, and G. Montemezzani, "Segmented composite optical parametric amplification," Appl. Sci., Vol. 10, 1220, 2020.
doi:10.3390/app10041220 Google Scholar
25. Kida, Y. and T. Imasaka, "Four-wave optical parametric amplification in a raman-active gas," Photonics, Vol. 2, 933-945, 2015.
doi:10.3390/photonics2030933 Google Scholar
26. Manzoni, C. and G. Cerullo, J. Opt., Vol. 18, 103501, 2016.
27. Wang, K.-Y. and A. C. Foster, J. Opt., Vol. 17, 094012, 2015.
28. Schmidt, B., N. Thire, M. Boivin, et al. "Frequency domain optical parametric amplification," Nat. Commun., Vol. 5, 3643, 2014.
doi:10.1038/ncomms4643 Google Scholar
29. Dao, L., K. Dinh, and P. Hannaford, "Perturbative optical parametric amplification in the extreme ultraviolet," Nat. Commun., Vol. 6, 7175, 2015.
doi:10.1038/ncomms8175 Google Scholar
30. Ilday, F. O. and F. X. Kartner, "Cavity-enhanced optical parametric chirped-pulse amplification," Opt. Lett., Vol. 31, 637-639, 2006.
doi:10.1364/OL.31.000637 Google Scholar
31. Asırım, O. E. and M. Kuzuoglu, "Optimization of optical parametric amplification efficiency in a microresonator under ultrashort pump wave excitation," International Journal of Electromagnetics and Applications, Vol. 9, No. 1, 14-34, 2019. Google Scholar
32. Yang, M., et al., "An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 24, No. 6, 1-7, Art No. 8300607, Nov.–Dec. 2018.
doi:10.1109/JSTQE.2018.2836992 Google Scholar
33. Varin, C., G. Bart, T. Fennel, and T. Brabec, "Nonlinear Lorentz model for the description of nonlinear optical dispersion in nanophotonics simulations [Invited]," Opt. Mater. Express, Vol. 9, 771-778, 2019.
doi:10.1364/OME.9.000771 Google Scholar
34. Boyd, R. W., Nonlinear Optics, 105-107, Academic Press, 2008.
35. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, 885-917, Wiley-Interscience, 2007.
36. Nocedal, J. and S. J. Wright, Numerical Optimization, 36-37, Springer, 2006.
37. Asırım, O. E., Super-gain parametric wave amplification in optical micro-resonators using ultrashort pump waves, Middle East Technical University Library, 2020.
38. Paschotta, R., "Article on ‘optical parametric amplifiers’," Encyclopedia of Laser Physics and Technology, 1st Edition, Wiley-VCH, Oct. 2008, ISBN 978-3-527-40828-3. Google Scholar
39. Yang, Y., D. Zhu, W. Yan, et al. "A general theoretical and experimental framework for nanoscale electromagnetism," Nature, Vol. 576, 248-252, 2019.
doi:10.1038/s41586-019-1803-1 Google Scholar
40. Abubakar, A. B., P. Kumam, H. Mohammad, A. M. Awwal, and K. Sitthithakerngkiet, "A modified Fletcher-Reeves conjugate gradient method for monotone nonlinear equations with some applications," Mathematics, Vol. 7, 745, 2019.
doi:10.3390/math7080745 Google Scholar
41. Sellami, B. and M. C. E. Sellami, "Global convergence of a modified Fletcher-Reeves conjugate gradient method with Wolfe line search," Asian-European Journal of Mathematics, Vol. 13, No. 04, Jun. 2020.
doi:10.1142/S1793557120500813 Google Scholar
42. Pang, D., S. Du, and J. Ju, "The smoothing Fletcher-Reeves conjugate gradient method for solving finite minimax problems," Science Asia, Vol. 42, 40-45, 2016.
doi:10.2306/scienceasia1513-1874.2016.42.040 Google Scholar
43. Frazer, L., J. K. Gallaher, and T. W. Schmidt, "Optimizing the efficiency of solar photon upconversion," ACS Energy Letters, Vol. 2, No. 6, 1346-1354, 2017.
doi:10.1021/acsenergylett.7b00237 Google Scholar
44. Seo, Y.-K., J.-H. Seo, and W.-Y. Choi, "Photonic frequency-upconversion efficiencies in semiconductor optical amplifiers," Photonics Technology Letters, Vol. 15, 751-753, IEEE, 2003.
doi:10.1109/LPT.2003.809970 Google Scholar
45. Tan, W., X. Qiu, G. Zhao, et al. "High-efficiency frequency upconversion of 1.5 μm laser based on a doubly resonant external ring cavity with a low finesse for signal field," Appl. Phys. B, Vol. 123, 52, 2017.
doi:10.1007/s00340-016-6626-2 Google Scholar