Vol. 90
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
Hardware Enabled Acceleration of Near-Field Coded Aperture Radar Physical Model for Millimetre-Wave Computational Imaging
Progress In Electromagnetics Research B, Vol. 90, 91-108, 2021
There is an increasing demand in real-time imagery applications such as rapid response to disaster rescue and security screening to name a few. The throughput of a radar imaging system is mainly controlled by two parameters; data acquisition time and signal processing time. To minimize the data acquisition time, various methods are being tried and tested by researchers worldwide. Among them is the computational imaging (CI) technique, which relies on using coded apertures to encode the radar back-scattered measurements onto a set of spatio-temporarily incoherent radiation patterns. Such a CI-based imaging approach eliminates the requirement for a raster scan and can substantially simplify the physical hardware architecture. Equally important is the processing time needed to retrieve the scene information from the coded back-scattered measurements. In CI, the simplification in the hardware layer comes at the cost of increased complexity in the signal processing layer due to the indirect mapping and compression of the scene information through the spatio-temporally incoherent transfer function of the coded apertures. To address this particular challenge, this paper presents a hardware-based solution for CI signal processing using a Field Programmable Gate Array (an Xilinx Virtex-7 (XC7VX485T) FPGA chip) architecture. In particular, the proposed method consists of calculating the CI sensing matrix using the FPGA chip and storing it on the FPGA platform for image reconstruction. For the adjoint operation, the calculated sensing matrix is applied on the measured back-scattered waves from the target object. We demonstrate that the FPGA based calculation can reach 21.9 times faster speed than conventional brute-force solutions.
Rahul Sharma, Okan Yurduseven, Bhabesh Deka, and Vincent Fusco, "Hardware Enabled Acceleration of Near-Field Coded Aperture Radar Physical Model for Millimetre-Wave Computational Imaging," Progress In Electromagnetics Research B, Vol. 90, 91-108, 2021.

1. Ahmed, S. S., A. Genghammer, A. Schiessl, and L.-P. Schmidt, "Fully electronic e-band personnel imager of 2m2 aperture based on a multistatic architecture," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 1, 651-657, 2012.

2. Yurduseven, O., "Indirect microwave holographic imaging of concealed ordnance for airport security imaging systems," Progress In Electromagnetics Research, Vol. 146, 7-13, 2014.

3. Wang, Z., T. Chang, and H. Cui, "Review of active millimeter wave imaging techniques for personnel security screening," IEEE Access, Vol. 7, 148336-148350, 2019.

4. Yurduseven, O., T. Fromenteze, C. Decroze, and V. Fusco, "Frequency-diverse computational automotive radar technique for debris detection," IEEE Sensors Journal, Vol. 20, No. 22, 13167-13177, 2020.

5. Castro, J., S. Singh, A. Arora, S. Louie, and D. Senic, "Enabling safe autonomous vehicles by advanced mm-wave radar simulations," IEEE MTT-S International Microwave Symposium Digest, Vol. 2019-June, 1476-1479, 2019.

6. Diebold, A., M. Imani, and D. Smith, "Phaseless radar coincidence imaging with a MIMO SAR platform," Remote Sensing, Vol. 11, No. 5, 2019.

7. Sarabandi, K., M. Vahidpour, M. Moallem, and J. East, "Compact beam scanning 240 GHz radar for navigation and collision avoidance," Proceedings of SPIE — The International Society for Optical Engineering, Vol. 8031, 2011.

8. Detlefsen, J., "Industrial applications of microwave imaging," 1991 21st European Microwave Conference, Vol. 1, 108-119, 1991.

9. Bilik, I., O. Longman, S. Villeval, and J. Tabrikian, "The rise of radar for autonomous vehicles: Signal processing solutions and future research directions," IEEE Signal Processing Magazine, Vol. 36, No. 5, 20-31, 2019.

10. Shehab, S., J. Feng, and N. Karmakar, "Trends on remote sensing technology: Receiver architectures and antenna systems," 1st International Conference on Robotics, Electrical and Signal Processing Techniques, ICREST 2019, 227-232, 2019.

11. Li, Q., K. Chen, W. Guo, L. Lang, F. He, L. Chen, and Z. Xiong, "An aperture synthesis radiometer at millimeter wave band," 2008 International Conference on Microwave and Millimeter Wave Technology Proceedings, ICMMT, Vol. 4, 1699-1701, 2008.

12. Piddyachiy, V., V. Shulga, V. Myshenko, A. Korolev, A. Myshenko, and A. Antyufeyev, "Ground-based 3 mm-wave radiometer for spectroscopic observations of atmospheric ozone and carbon monoxide," 2010 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, MSMW’2010, 2010.

13. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, 2001.

14. Martınez-Lorenzo, J., F. Quivira, and C. Rappaport, "SAR imaging of suicide bombers wearing concealed explosive threats," Progress In Electromagnetics Research, Vol. 125, 255-272, 2012.

15. Demirci, S., H. Cetinkaya, E. Yigit, C. Ozdemir, and A. Vertiy, "A study on millimeter-wave imaging of concealed objects: Application using backprojection algorithm," Progress In Electromagnetics Research, Vol. 128, 457-477, 2012.

16. Hansen, H., A. Kulessa, and G. Brooker, "Millimetre-wave radars in targeting and data linking operations," 2003 Proceedings of the International Conference on Radar, RADAR 2003, 230-234, 2003.

17. Fromenteze, T., O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, "Computational imaging using a mode-mixing cavity at microwave frequencies," Applied Physics Letters, Vol. 106, No. 19, 2015.

18. Qi, F., I. Ocket, D. Schreurs, and B. Nauwelaers, "A system-level simulator for indoor mmW SAR imaging and its applications," Optics Express, Vol. 20, No. 21, 23811-23820, 2012.

19. Laviada, J., A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, "Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: Theory and validation," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 573-584, 2015.

20. Charvat, G., L. Kempel, E. Rothwell, C. Coleman, and E. Mokole, "An Ultrawideband (UWB) switched-antenna-array radar imaging system," IEEE International Symposium on Phased Array Systems and Technology, 543-550, 2010.

21. Withington, S., G. Saklatvala, and M. Hobson, "Partially coherent analysis of imaging and interferometric phased arrays: Noise, correlations, and uctuations," Journal of the Optical Society of America A: Optics and Image Science, and Vision, Vol. 23, No. 6, 1340-1348, 2006.

22. Gollub, J., O. Yurduseven, K. Trofatter, D. Arnitz, F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, M. Reynolds, and D. Smith, "Large metasurface aperture for millimeter wave computational imaging at the human-scale," Scientific Reports, Vol. 7, 2017.

23. Molaei, A., J. Heredia-Juesas, G. Ghazi, J. Vlahakis, and J. A. Martinez-Lorenzo, "Digitized metamaterial absorber-based compressive reflector antenna for high sensing capacity imaging," IEEE Access, Vol. 7, 1160-1173, 2019.

24. Barbastathis, G., A. Ozcan, and G. Situ, "On the use of deep learning for computational imaging," Optica, Vol. 6, No. 8, 921-943, 2019.

25. Fromenteze, T., E. L. Kpre, D. Carsenat, C. Decroze, and T. Sakamoto, "Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device," IEEE Access, Vol. 4, 1050-1060, 2016.

26. Hunt, J., T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, "Metamaterial apertures for computational imaging," Science, Vol. 339, No. 6117, 310-313, 2013.

27. Yurduseven, O., V. R. Gowda, J. N. Gollub, and D. R. Smith, "Printed aperiodic cavity for computational and microwave imaging," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 5, 367-369, 2016.

28. Yurduseven, O., J. Gollub, A. Rose, D.Marks, and D. Smith, "Design and simulation of a frequency-diverse aperture for imaging of human-scale targets," IEEE Access, Vol. 4, 5436-5451, 2016.

29. Chi, W. and N. George, "Phase-coded aperture for optical imaging," Optics Communications, Vol. 282, 2110-2117, June 2008.

30. Don, M. L., C. Fu, and G. R. Arce, "Compressive imaging via a rotating coded aperture," Applied Optics, Vol. 56, No. 3, B142, 2017.

31. Watts, C. M., D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, "Terahertz compressive imaging with metamaterial spatial light modulators," Nature Photonics, Vol. 8, No. 8, 605, 2014.

32. Sleasman, T., M. F. Imani, J. N. Gollub, and D. R. Smith, "Dynamic metamaterial aperture for microwave imaging," Applied Physics Letters, Vol. 107, No. 20, 204104, 2015.

33. Imani, M., J. Gollub, O. Yurduseven, A. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. Smith, "Review of metasurface antennas for computational microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1860-1875, 2020.

34. Andrecut, M., "Fast GPU implementation of sparse signal recovery from random projections," Engineering Letters, Vol. 17, No. 3, 2009.

35. Zhou, B., Y. Peng, C. Yeh, and J. Tang, "GPGPU accelerated fast convolution back-projection for radar image reconstruction," Tsinghua Science and Technology, Vol. 16, No. 3, 256-263, 2011.

36. Park, S. and D. Shires, "CUDA optimization techniques for SAR imaging algorithm," Proceedings of the 2010 International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2010, Vol. 1, 36-40, 2010.

37. Clemente, C., M. Di Bisceglie, M. Di Santo, N. Ranaldo, and M. Spinelli, "Processing of synthetic aperture radar data with GPGPU," IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation, 309-314, 2009.

38. Rybalkin, V. and N. Wehn, "When massive GPU parallelism Ain’t enough: A novel hardware architecture of 2D-LSTM neural network," FPGA 2020 — 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 111-121, 2020.

39. Farhadi, M., M. Ghasemi, and Y. Yang, "A novel design of adaptive and hierarchical convolutional neural networks using partial reconfiguration on FPGA," 2019 IEEE High Performance Extreme Computing Conference, HPEC 2019, 2019.

40. Zhou, X., Z. Yu, Y. Cao, and S. Jiang, "SAR imaging realization with FPGA based on VIVADO HLS," ICSIDP 2019 — IEEE International Conference on Signal, Information and Data Processing 2019, 2019.

41. Liu, R., D. Zhu, D. Wang, and W. Du, "High resolution SAR signal processing system using FPGA," 2019 International Applied Computational Electromagnetics Society Symposium-China, ACES 2019, 2019.

42. Di, W., C. Chen, and Y. Liu, "FPGA-based parallel system for synthetic aperture radar imaging," 2018 International Conference on Electronics Technology, ICET 2018, 430-433, 2018.

43. Yurduseven, O., M. A. B. Abbasi, T. Fromenteze, and V. Fusco, "Lens-loaded coded aperture with increased information capacity for computational microwave imaging," Remote Sensing, Vol. 12, No. 9, 1531, 2020.

44. Sleasman, T., M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, "Single-frequency microwave imaging with dynamic metasurface apertures," JOSA B, Vol. 34, No. 8, 1713-1726, 2017.

45. Yurduseven, O., M. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. Smith, "Resolution of the frequency diverse metamaterial aperture imager," Progress In Electromagnetics Research, Vol. 150, 97-107, 2015.

46. Peng, R., O. Yurduseven, T. Fromenteze, and D. R. Smith, "Advanced processing of 3D computational microwave polarimetry using a near-field frequency-diverse antenna," IEEE Access, Vol. 8, 166261-166272, 2020.

47. Fromenteze, T., O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, "Computational polarimetric microwave imaging," Optics Express, Vol. 25, No. 22, 27488-27505, 2017.

48. Lipworth, G., A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, "Comprehensive simulation platform for a metamaterial imaging system," Applied Optics, Vol. 54, No. 31, 9343-9353, 2015.

49. Mandel, L. and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, 1995.

50. Hecht, K. T., The Born Approximation, 462-476, Springer New York, New York, NY, 2000.

51. Rashidi-Ranjbar, E. and M. Dehmollaian, "Microwave imaging using frequency-diverse scattering of a random rough surface," ICEE 2019 — 27th Iranian Conference on Electrical Engineering, 1679-1681, 2019.

52. Venkatesh, S., N. Viswanathan, and D. Schurig, "W-band sparse synthetic aperture for computational imaging," Optics Express, Vol. 24, No. 8, 8317-8331, 2016.

53. Kowdle, A., C. Rhemann, S. Fanello, A. Tagliasacchi, J. Taylor, P. Davidson, M. Dou, K. Guo, C. Keskin, S. Khamis, V. Tankovich, and J. Valentin, "The need 4 speed in real-time dense visual tracking," ACM Transactions on Graphics, Vol. 37, No. 6, 2018.

54. Malczewski, K., "Rapid diffusion weighted imaging with enhanced resolution," Applied Magnetic Resonance, Vol. 51, No. 3, 221-239, 2020.

55. X. Inc. Virtex-7 FPGA Design Summary, p. 5, Xilinx, February 27, 2018.

56. X. Inc. CORDIC v6.0 LogiCORE IP Product Guide, Xilinx, December 20, 2017.

57. X. Inc. 7 Series DSP48E1 Slice User Guide, Xilinx, March 27, 2018.

58. Andraka, R., "A survey of CORDIC algorithms for FPGA based computers," Tech. Rep., 1998.

59. Yurduseven, O., T. Fromenteze, and D. R. Smith, "Relaxation of alignment errors and phase calibration in computational frequency-diverse imaging using phase retrieval," IEEE Access, Vol. 6, 14884-14894, 2018.

60. Yurduseven, O., J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, "Software calibration of a frequency-diverse, multistatic, computational imaging system," IEEE Access, Vol. 4, 2488-2497, 2016.

61. Sleasman, T., M. F. Imani, O. Yurduseven, K. P. Trofatter, V. R. Gowda, D. L. Marks, J. N. Gollub, and D. R. Smith, "Near field scan alignment procedure for electrically large apertures," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3257-3262, 2017.