1. Rakov, V. A. and M. A. Uman, Lightning: Physics and Effects, Cambridge University Press, 2003, https://doi.org/10.1017/CBO9781107340886.
doi:10.1017/CBO9781107340886
2. Marshall, T., S. Bandara, N. Karunarathne, S. Karunarathne, I. Kolmasova, R. Siedlecki, and M. Stolzenburg, "A study of lightning flash initiation prior to the first initial breakdown pulse," Atmospheric Research, Vol. 217, 10-23, 2019, https://doi.org/10.1016/j.atmosres.2018.10.013.
doi:10.1016/j.atmosres.2018.10.013 Google Scholar
3. Berkopec, A., "Fast particles as initiators of stepped leaders in CG and IC lightnings," Journal of Electrostatics, Vol. 70, 462-467, 2012, https://doi.org/10.1016/j.elstat.2012.07.001.
doi:10.1016/j.elstat.2012.07.001 Google Scholar
4. Gao, X., N. Liu, F. Shi, and H. K. Rassoul, "Streamer discharge initiation from an isolated spherical hydrometeor at subbreakdown condition," Journal of Electrostatics, Vol. 106, 103457, 2020, https://doi.org/10.1016/j.elstat.2020.103457.
doi:10.1016/j.elstat.2020.103457 Google Scholar
5. Latham, J., "The electrification of thunderstorms," Quarterly Journal of the Royal Meteorological Society, Vol. 107, 277-298, 1981, https://doi.org/10.1002/qj.49710745202.
doi:10.1002/qj.49710745202 Google Scholar
6. Rycroft, M. J., A. Odzimek, N. F. Arnold, M. Fullekrug, A. Kulak, and T. Neubert, "New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 69, 2485-2509, 2007, https://doi.org/10.1016/j.jastp.2007.09.004.
doi:10.1016/j.jastp.2007.09.004 Google Scholar
7. Liu, C., E. R. Williams, E. J. Zipser, and G. Burns, "Diurnal variations of global thunderstorms and electrified shower clouds and their contribution to the global electrical circuit," Journal of the Atmospheric Sciences, Vol. 67, 309-323, 2010, https://doi.org/10.1175/2009jas3248.1.
doi:10.1175/2009JAS3248.1 Google Scholar
8. Harrison, G., "The cloud chamber and CTR Wilson’s legacy to atmospheric science," Weather, Vol. 66, 276-279, 2011, https://doi.org/10.1002/wea.830.
doi:10.1002/wea.830 Google Scholar
9. Nicoll, K., "Space weather influences on atmospheric electricity," Weather, Vol. 69, 238-241, 2014, https://doi.org/10.1002/wea.2323.
doi:10.1002/wea.2323 Google Scholar
10. Mangla, B., D. Sharma, and A. Rajput, "Ion density variation at upper ionosphere during thunderstorm," Advances in Space Research, Vol. 59, 1189-1199, 2017, https://doi.org/10.1016/j.asr.2016.11.039.
doi:10.1016/j.asr.2016.11.039 Google Scholar
11. Burns, G., A. Frank-Kamenetsky, B. Tinsley, W. French, P. Grigioni, G. Camporeale, and E. Bering, "Atmospheric global circuit variations from Vostok and Concordia electric field measurements," Journal of the Atmospheric Sciences, Vol. 74, 783-800, 2017, https://doi.org/10.1175/jasd- 16-0159.1.
doi:10.1175/JAS-D-16-0159.1 Google Scholar
12. Nina, A., M. Radovanovic, B. Milovanovic, A. Kovacevic, J. Bajcetic, L. C, and Popovi, "Low ionospheric reactions on tropical depressions prior hurricanes," Advances in Space Research, Vol. 60, 1866-1877, 2017, https://doi.org/10.1016/j.asr.2017.05.024.
doi:10.1016/j.asr.2017.05.024 Google Scholar
13. Dehel, T. F., M. Dickinson, F. Lorge, R. Startzel, and Jr., "Electric field and Lorentz force contribution to atmospheric vortex phenomena," Journal of Electrostatics, Vol. 65, 631-638, 2007, https://doi.org/10.1016/j.elstat.2007.04.001.
doi:10.1016/j.elstat.2007.04.001 Google Scholar
14. Schultz, D. M. and R. J. Vavrek, "An overview of thundersnow," Weather, Vol. 64, 274-277, 2009, https://doi.org/10.1002/wea.376.
doi:10.1002/wea.376 Google Scholar
15. Takahashi, T., T. Tajiri, and Y. Sonoi, "Charges on graupel and snow crystals and the electrical structure of winter thunderstorms," Journal of the Atmospheric Sciences, Vol. 56, 1561-1578, 1999, https://doi.org/10.1175/1520-0469(1999)056%3C1561:cogasc%3E2.0.co.
doi:10.1175/1520-0469(1999)056<1561:COGASC>2.0.CO;2 Google Scholar
16. Thebault, E., C. C. Finlay, C. D. Beggan, P. Alken, J. Aubert, O. Barrois, F. Bertrand, T. Bondar, A. Boness, and L. Brocco, "International geomagnetic reference field: The 12th generation," Earth, Planets and Space, Vol. 67, 79, 2015, https://doi.org/10.1186/s40623-015-0228-9.
doi:10.1186/s40623-015-0228-9 Google Scholar
17. Macmillan, S., "Earth’s magnetic field, Geophysics and Geochemistry, Encyclopedia of Life Support Systems (EOLSS)," Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK, 2006, https://www.eolss.net/sample-chapters/C01/E6-16-04-01.pdf. Google Scholar
18. Stolzenburg, M., W. D. Rust, B. F. Smull, and T. C. Marshall, "Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems," Journal of Geophysical Research: Atmospheres, Vol. 103, 14059-14078, 1998, https://doi.org/10.1029/97jd03546.
doi:10.1029/97JD03546 Google Scholar
19. Pineda, N., T. Rigo, J. Montanya, and O. A. van der Velde, "Charge structure analysis of a severe hailstorm with predominantly positive cloud-to-ground lightning," Atmospheric Research, Vol. 178, 31-44, 2016, https://doi.org/10.1016/j.atmosres.2016.03.010.
doi:10.1016/j.atmosres.2016.03.010 Google Scholar
20. Molinari, J., D. Vollaro, and K. L. Corbosiero, "Tropical cyclone formation in a sheared environment: A case study," Journal of the Atmospheric Sciences, Vol. 61, 2493-2509, 2004, https://doi.org/10.1175/jas3291.1.
doi:10.1175/JAS3291.1 Google Scholar
21. Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, "The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure," Journal of the Atmospheric Sciences, Vol. 62, 4151-4177, 2005, https://doi.org/10.1175/jas3615.1. Google Scholar
22. Barthe, C., T. Hoarau, and C. Bovalo, "Cloud electrification and lightning activity in a tropical cyclone-like vortex," Atmospheric Research, Vol. 180, 297-309, 2016, https://doi.org/10.1016/j.atmosres.2016.05.023. Google Scholar
23. Ahmad, A. and M. Ghosh, "Variability of lightning activity over India on ENSO time scales," Advances in Space Research, Vol. 60, 2379-2388, 2017, https://doi.org/10.1016/j.asr.2017.09.018. Google Scholar
24. Matthews, J., M. Wright, D. Clarke, E. Morley, H. Silva, A. Bennett, D. Robert, and D. Shallcross, "Urban and rural measurements of atmospheric potential gradient," Journal of Electrostatics, Vol. 97, 42-50, 2019, https://doi.org/10.1016/j.elstat.2018.11.006. Google Scholar
25. Nicoll, K., "Measurements of atmospheric electricity aloft," Surveys in Geophysics, Vol. 33, 991-1057, 2012, https://doi.org/10.1007/s10712-012-9188-9. Google Scholar
26. Falconer, R. E., "A correlation between atmospheric electrical activity and the jet stream," General Electric Co Schenectady, NY, 1953, https://apps.dtic.mil/dtic/tr/fulltext/u2/015500.pdf. Google Scholar
27. Saunders, C., "Charge separation mechanisms in clouds," Space Science Reviews, Vol. 137, 335, 2008, https://doi.org/10.1007/978-0-387-87664-1_22. Google Scholar
28. Krasilnikov, E. Y., "Electromagnetohydrodynamic nature of tropical cyclones, hurricanes, and tornadoes," Journal of Geophysical Research: Atmospheres, Vol. 102, 13571-13580, 1997, https://doi.org/10.1029/97jd00146. Google Scholar
29. Artekha, S. and A. Belyan, "On the role of electromagnetic phenomena in some atmospheric processes," Nonlinear Processes in Geophysics, Vol. 20, 293-304, 2013, https://doi.org/10.5194/npg- 20-293-2013. Google Scholar
30. Toth, III, J. R., S. Rajupet, H. Squire, B. Volbers, J. Zhou, L. Xie, R. M. Sankaran, and D. J. Lacks, "Electrostatic forces alter particle size distributions in atmospheric dust," Atmospheric Chemistry & Physics, Vol. 20, 3181-3190, 2020, https://doi.org/10.5194/acp-20-3181-2020. Google Scholar
31. Pang, X. F., "The experimental evidences of the magnetism of water by magnetic-field treatment," IEEE Transactions on Applied Superconductivity, Vol. 24, 1-6, 2014, https://doi.org/10.1109/tasc.2014.2340455. Google Scholar
32. Cai, R., H. Yang, J. He, and W. Zhu, "The effects of magnetic fields on water molecular hydrogen bonds," Journal of Molecular Structure, Vol. 938, 15-19, 2009, https://doi.org/10.1016/j.molstruc.2009.08.037. Google Scholar
33. Pang, X.-F. and G.-F. Shen, "The changes of physical properties of water arising from the magnetic field and its mechanism," Modern Physics Letters B, Vol. 27, No. 1350228, 1-9, 2013, https://doi.org/10.1142/s021798491350228x. Google Scholar
34. Semikhina, L. and V. Kiselev, "Effect of weak magnetic fields on the properties of water and ice," Soviet Physics Journal, Vol. 31, 351-354, 1988, https://doi.org/10.1007/bf01243721. Google Scholar
35. Mohri, K. and M. Fukushima, "Gradual decreasing characteristics and temperature stability of electric resistivity in water triggered with milligauss AC field," IEEE Transactions on Magnetics, Vol. 38, 3353-3355, 2002, https://doi.org/10.1109/tmag.2002.802307. Google Scholar
36. Saunders, C., "Charge separation mechanisms in clouds," Space Science Reviews, Vol. 137, 335-353, 2008, https://doi.org/10.1007/s11214-008-9345-0. Google Scholar
37. Takahashi, T., S. Sugimoto, T. Kawano, and K. Suzuki, "Riming electrification in Hokuriku winter clouds and comparison with laboratory observations," Journal of the Atmospheric Sciences, Vol. 74, 431-447, 2017, https://doi.org/10.1175/jas-d-16-0154.1. Google Scholar
38. Emersic, C. and C. Saunders, "Further laboratory investigations into the relative diffusional growth rate theory of thunderstorm electrification," Atmospheric Research, Vol. 98, 327-340, 2010, https://doi.org/10.1016/j.atmosres.2010.07.011. Google Scholar
39. Lamb, H. H., Climate: Present, Past and Future (Routledge Revivals): Volume 2: Climatic History and the Future, Routledge, 2013, https://doi.org/10.4324/9780203804315.
40. King, J., "Weather and the Earth’s magnetic field," Nature, Vol. 247, 131-134, 1974, https://doi.org/10.1038/247131a0. Google Scholar
41. King, J. and D. Willis, Magnetometeorology: Relationships between the weather and Earth’s magnetic field, NASA, 1975, https://ntrs.nasa.gov/search.jsp?R=19760007443.
42. Svensmark, H. and E. Friis-Christensen, "Variation of cosmic ray flux and global cloud coverage — A missing link in solar-climate relationships," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 59, 1225-1232, 1997, https://doi.org/10.1016/s1364-6826(97)00001-1. Google Scholar
43. Courtillot, V., Y. Gallet, J.-L. Le Mouel, F. Fluteau, and A. Genevey, "Are there connections between the Earth’s magnetic field and climate?," Earth and Planetary Science Letters, Vol. 253, 328-339, 2007, http://dx.doi.org/10.1016/j.epsl.2006.10.032. Google Scholar
44. Knudsen, M. F. and P. Riisager, "Is there a link between Earth’s magnetic field and low-latitude precipitation?," Geology, Vol. 37, 71-74, 2009, https://doi.org/10.1130/g25238a.1. Google Scholar
45. Anderson, R. Y., "Possible connection between surface winds, solar activity and the Earth’s magnetic field," Nature, Vol. 358, 51-53, 1992, https://doi.org/10.1038/358051a0. Google Scholar
46. Schlegel, K., G. Diendorfer, S. Thern, and M. Schmidt, "Thunderstorms, lightning and solar activity — Middle Europe," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 63, 1705-1713, 2001, https://doi.org/10.1016/s1364-6826(01)00053-0. Google Scholar
47. Gurevich, A. V. and K. P. Zybin, "Runaway breakdown and the mysteries of lightning," Phys. Today, Vol. 58, 37-43, 2005, https://doi.org/10.1063/1.1995746. Google Scholar
48. Babich, L. P., E. I. Bochkov, J. R. Dwyer, and I. M. Kutsyk, "Numerical simulations of local thundercloud field enhancements caused by runaway avalanches seeded by cosmic rays and their role in lightning initiation," Journal of Geophysical Research: Space Physics, Vol. 117, 2012, https://doi.org/10.1029/2012ja017799. Google Scholar
49. Lindy, N., E. Benton, W. Beasley, and D. Petersen, "Energetic cosmic-ray secondary electron distribution at thunderstorm altitudes," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 179, 435-440, 2018, https://doi.org/10.1016/j.jastp.2018.10.003. Google Scholar
50. Jeon, J., S.-J. Noh, and D.-H. Lee, "Relationship between lightning and solar activity for recorded between CE 1392–1877 in Korea," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 172, 63-68, 2018, https://doi.org/10.1016/j.jastp.2018.03.020. Google Scholar
51. Collier, A. and A. Hughes, "A harmonic model for the temporal variation of lightning activity over Africa," Journal of Geophysical Research: Atmospheres, Vol. 116, 2011, https://doi.org/10.1029/2010JD014455. Google Scholar
52. Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, "Gridded lightning climatology from TRMM-LIS and OTD: Dataset description," Atmospheric Research, Vol. 135, 404-414, 2014, https://dx.doi.org/10.5067/LIS/LIS-OTD/DATA311. Google Scholar
53. Kuleshov, Y., D. Mackerras, and M. Darveniza, "Spatial distribution and frequency of lightning activity and lightning flash density maps for Australia," Journal of Geophysical Research: Atmospheres, Vol. 111, 2006, https://doi.org/10.1029/2005JD006982. Google Scholar
54. Lapierre, J., M. Hoekzema, M. Stock, C. Merrill, and S. C. Thangaraj, "Earth networks lightning network and dangerous thunderstorm alerts," 2019 11th Asia-Pacific International Conference on Lightning (APL), 1-5, IEEE, 2019, https://doi.org/10.1109/APL.2019.8816032. Google Scholar
55. Kuettner, J. P., J. D. Sartor, and Z. Levin, "Thunderstorm electrification — Inductive or non-inductive?," Journal of the Atmospheric Sciences, Vol. 38, 2470-2484, 1981, https://doi.org/10.1175/1520-0469(1981)038%3C2470:teoni%3E2.0.co;2. Google Scholar
56. Christian, H., C. Holmes, J. Bullock, W. Gaskell, A. Illingworth, and J. Latham, "Air-borne and ground-based studies of thunderstorms in the vicinity of Langmuir Laboratory," Quarterly Journal of the Royal Meteorological Society, Vol. 106, 159-174, 1980, https://doi.org/10.1002/qj.49710644711. Google Scholar