Vol. 90
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-01-18
Lorentz Force Contribution to Thunderstorm's Electrical Characteristics
By
Progress In Electromagnetics Research B, Vol. 90, 151-166, 2021
Abstract
In this paper, the exerted electric and geomagnetic forces on the electrified hydrometeors in thunderclouds are compared. The parameters of geomagnetic field are acquired from International Geomagnetic Reference Field (IGRF) model. First, the calculations showed that the magnitude of the electricforce exerted on a charged hydrometeor dominates the magnitude of the geomagnetic force in troposphere. These results revealed the significance of electricforce in the formation of thunderclouds' charge structure. Moreover, as the electric field increases in thunderstorm conditions, (regarding the dependence of the induction mechanism of cloud electrification to the intensity of the electric field) the increased electric field strengthens the induction mechanism of cloud electrification and influences the electrical properties of thunderstorm. Second, using satellite-based/ground-based data and reports, an inverse relation has been revealed between the totalgeomagnetic field and the mean annual lightningactivity in most of the hot spots on the Earth. Moreover, a comparison between the global annual thunder days' map and the map of global total geomagnetic field showed an inverse relation between these two maps. Furthermore, regarding the horizontal and vertical correlation coefficient matrices of the geomagnetic field and the global mean annual lightning activity (in the global tropics and subtropics), approximately in latitudes and longitudes with high lightning density, the reverse relation between the average annual lightning activity and the total geomagnetic field is stronger.
Citation
Babak Sadeghi, Amir Abbas Shayegani Akmal, and Farahnaz Taghavi, "Lorentz Force Contribution to Thunderstorm's Electrical Characteristics," Progress In Electromagnetics Research B, Vol. 90, 151-166, 2021.
doi:10.2528/PIERB20121001
References

1. Rakov, V. A. and M. A. Uman, Lightning: Physics and Effects, Cambridge University Press, 2003, https://doi.org/10.1017/CBO9781107340886.
doi:10.1017/CBO9781107340886

2. Marshall, T., S. Bandara, N. Karunarathne, S. Karunarathne, I. Kolmasova, R. Siedlecki, and M. Stolzenburg, "A study of lightning flash initiation prior to the first initial breakdown pulse," Atmospheric Research, Vol. 217, 10-23, 2019, https://doi.org/10.1016/j.atmosres.2018.10.013.
doi:10.1016/j.atmosres.2018.10.013        Google Scholar

3. Berkopec, A., "Fast particles as initiators of stepped leaders in CG and IC lightnings," Journal of Electrostatics, Vol. 70, 462-467, 2012, https://doi.org/10.1016/j.elstat.2012.07.001.
doi:10.1016/j.elstat.2012.07.001        Google Scholar

4. Gao, X., N. Liu, F. Shi, and H. K. Rassoul, "Streamer discharge initiation from an isolated spherical hydrometeor at subbreakdown condition," Journal of Electrostatics, Vol. 106, 103457, 2020, https://doi.org/10.1016/j.elstat.2020.103457.
doi:10.1016/j.elstat.2020.103457        Google Scholar

5. Latham, J., "The electrification of thunderstorms," Quarterly Journal of the Royal Meteorological Society, Vol. 107, 277-298, 1981, https://doi.org/10.1002/qj.49710745202.
doi:10.1002/qj.49710745202        Google Scholar

6. Rycroft, M. J., A. Odzimek, N. F. Arnold, M. Fullekrug, A. Kulak, and T. Neubert, "New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 69, 2485-2509, 2007, https://doi.org/10.1016/j.jastp.2007.09.004.
doi:10.1016/j.jastp.2007.09.004        Google Scholar

7. Liu, C., E. R. Williams, E. J. Zipser, and G. Burns, "Diurnal variations of global thunderstorms and electrified shower clouds and their contribution to the global electrical circuit," Journal of the Atmospheric Sciences, Vol. 67, 309-323, 2010, https://doi.org/10.1175/2009jas3248.1.
doi:10.1175/2009JAS3248.1        Google Scholar

8. Harrison, G., "The cloud chamber and CTR Wilson’s legacy to atmospheric science," Weather, Vol. 66, 276-279, 2011, https://doi.org/10.1002/wea.830.
doi:10.1002/wea.830        Google Scholar

9. Nicoll, K., "Space weather influences on atmospheric electricity," Weather, Vol. 69, 238-241, 2014, https://doi.org/10.1002/wea.2323.
doi:10.1002/wea.2323        Google Scholar

10. Mangla, B., D. Sharma, and A. Rajput, "Ion density variation at upper ionosphere during thunderstorm," Advances in Space Research, Vol. 59, 1189-1199, 2017, https://doi.org/10.1016/j.asr.2016.11.039.
doi:10.1016/j.asr.2016.11.039        Google Scholar

11. Burns, G., A. Frank-Kamenetsky, B. Tinsley, W. French, P. Grigioni, G. Camporeale, and E. Bering, "Atmospheric global circuit variations from Vostok and Concordia electric field measurements," Journal of the Atmospheric Sciences, Vol. 74, 783-800, 2017, https://doi.org/10.1175/jasd- 16-0159.1.
doi:10.1175/JAS-D-16-0159.1        Google Scholar

12. Nina, A., M. Radovanovic, B. Milovanovic, A. Kovacevic, J. Bajcetic, L. C, and Popovi, "Low ionospheric reactions on tropical depressions prior hurricanes," Advances in Space Research, Vol. 60, 1866-1877, 2017, https://doi.org/10.1016/j.asr.2017.05.024.
doi:10.1016/j.asr.2017.05.024        Google Scholar

13. Dehel, T. F., M. Dickinson, F. Lorge, R. Startzel, and Jr., "Electric field and Lorentz force contribution to atmospheric vortex phenomena," Journal of Electrostatics, Vol. 65, 631-638, 2007, https://doi.org/10.1016/j.elstat.2007.04.001.
doi:10.1016/j.elstat.2007.04.001        Google Scholar

14. Schultz, D. M. and R. J. Vavrek, "An overview of thundersnow," Weather, Vol. 64, 274-277, 2009, https://doi.org/10.1002/wea.376.
doi:10.1002/wea.376        Google Scholar

15. Takahashi, T., T. Tajiri, and Y. Sonoi, "Charges on graupel and snow crystals and the electrical structure of winter thunderstorms," Journal of the Atmospheric Sciences, Vol. 56, 1561-1578, 1999, https://doi.org/10.1175/1520-0469(1999)056%3C1561:cogasc%3E2.0.co.
doi:10.1175/1520-0469(1999)056<1561:COGASC>2.0.CO;2        Google Scholar

16. Thebault, E., C. C. Finlay, C. D. Beggan, P. Alken, J. Aubert, O. Barrois, F. Bertrand, T. Bondar, A. Boness, and L. Brocco, "International geomagnetic reference field: The 12th generation," Earth, Planets and Space, Vol. 67, 79, 2015, https://doi.org/10.1186/s40623-015-0228-9.
doi:10.1186/s40623-015-0228-9        Google Scholar

17. Macmillan, S., "Earth’s magnetic field, Geophysics and Geochemistry, Encyclopedia of Life Support Systems (EOLSS)," Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK, 2006, https://www.eolss.net/sample-chapters/C01/E6-16-04-01.pdf.        Google Scholar

18. Stolzenburg, M., W. D. Rust, B. F. Smull, and T. C. Marshall, "Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems," Journal of Geophysical Research: Atmospheres, Vol. 103, 14059-14078, 1998, https://doi.org/10.1029/97jd03546.
doi:10.1029/97JD03546        Google Scholar

19. Pineda, N., T. Rigo, J. Montanya, and O. A. van der Velde, "Charge structure analysis of a severe hailstorm with predominantly positive cloud-to-ground lightning," Atmospheric Research, Vol. 178, 31-44, 2016, https://doi.org/10.1016/j.atmosres.2016.03.010.
doi:10.1016/j.atmosres.2016.03.010        Google Scholar

20. Molinari, J., D. Vollaro, and K. L. Corbosiero, "Tropical cyclone formation in a sheared environment: A case study," Journal of the Atmospheric Sciences, Vol. 61, 2493-2509, 2004, https://doi.org/10.1175/jas3291.1.
doi:10.1175/JAS3291.1        Google Scholar

21. Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, "The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure," Journal of the Atmospheric Sciences, Vol. 62, 4151-4177, 2005, https://doi.org/10.1175/jas3615.1.        Google Scholar

22. Barthe, C., T. Hoarau, and C. Bovalo, "Cloud electrification and lightning activity in a tropical cyclone-like vortex," Atmospheric Research, Vol. 180, 297-309, 2016, https://doi.org/10.1016/j.atmosres.2016.05.023.        Google Scholar

23. Ahmad, A. and M. Ghosh, "Variability of lightning activity over India on ENSO time scales," Advances in Space Research, Vol. 60, 2379-2388, 2017, https://doi.org/10.1016/j.asr.2017.09.018.        Google Scholar

24. Matthews, J., M. Wright, D. Clarke, E. Morley, H. Silva, A. Bennett, D. Robert, and D. Shallcross, "Urban and rural measurements of atmospheric potential gradient," Journal of Electrostatics, Vol. 97, 42-50, 2019, https://doi.org/10.1016/j.elstat.2018.11.006.        Google Scholar

25. Nicoll, K., "Measurements of atmospheric electricity aloft," Surveys in Geophysics, Vol. 33, 991-1057, 2012, https://doi.org/10.1007/s10712-012-9188-9.        Google Scholar

26. Falconer, R. E., "A correlation between atmospheric electrical activity and the jet stream," General Electric Co Schenectady, NY, 1953, https://apps.dtic.mil/dtic/tr/fulltext/u2/015500.pdf.        Google Scholar

27. Saunders, C., "Charge separation mechanisms in clouds," Space Science Reviews, Vol. 137, 335, 2008, https://doi.org/10.1007/978-0-387-87664-1_22.        Google Scholar

28. Krasilnikov, E. Y., "Electromagnetohydrodynamic nature of tropical cyclones, hurricanes, and tornadoes," Journal of Geophysical Research: Atmospheres, Vol. 102, 13571-13580, 1997, https://doi.org/10.1029/97jd00146.        Google Scholar

29. Artekha, S. and A. Belyan, "On the role of electromagnetic phenomena in some atmospheric processes," Nonlinear Processes in Geophysics, Vol. 20, 293-304, 2013, https://doi.org/10.5194/npg- 20-293-2013.        Google Scholar

30. Toth, III, J. R., S. Rajupet, H. Squire, B. Volbers, J. Zhou, L. Xie, R. M. Sankaran, and D. J. Lacks, "Electrostatic forces alter particle size distributions in atmospheric dust," Atmospheric Chemistry & Physics, Vol. 20, 3181-3190, 2020, https://doi.org/10.5194/acp-20-3181-2020.        Google Scholar

31. Pang, X. F., "The experimental evidences of the magnetism of water by magnetic-field treatment," IEEE Transactions on Applied Superconductivity, Vol. 24, 1-6, 2014, https://doi.org/10.1109/tasc.2014.2340455.        Google Scholar

32. Cai, R., H. Yang, J. He, and W. Zhu, "The effects of magnetic fields on water molecular hydrogen bonds," Journal of Molecular Structure, Vol. 938, 15-19, 2009, https://doi.org/10.1016/j.molstruc.2009.08.037.        Google Scholar

33. Pang, X.-F. and G.-F. Shen, "The changes of physical properties of water arising from the magnetic field and its mechanism," Modern Physics Letters B, Vol. 27, No. 1350228, 1-9, 2013, https://doi.org/10.1142/s021798491350228x.        Google Scholar

34. Semikhina, L. and V. Kiselev, "Effect of weak magnetic fields on the properties of water and ice," Soviet Physics Journal, Vol. 31, 351-354, 1988, https://doi.org/10.1007/bf01243721.        Google Scholar

35. Mohri, K. and M. Fukushima, "Gradual decreasing characteristics and temperature stability of electric resistivity in water triggered with milligauss AC field," IEEE Transactions on Magnetics, Vol. 38, 3353-3355, 2002, https://doi.org/10.1109/tmag.2002.802307.        Google Scholar

36. Saunders, C., "Charge separation mechanisms in clouds," Space Science Reviews, Vol. 137, 335-353, 2008, https://doi.org/10.1007/s11214-008-9345-0.        Google Scholar

37. Takahashi, T., S. Sugimoto, T. Kawano, and K. Suzuki, "Riming electrification in Hokuriku winter clouds and comparison with laboratory observations," Journal of the Atmospheric Sciences, Vol. 74, 431-447, 2017, https://doi.org/10.1175/jas-d-16-0154.1.        Google Scholar

38. Emersic, C. and C. Saunders, "Further laboratory investigations into the relative diffusional growth rate theory of thunderstorm electrification," Atmospheric Research, Vol. 98, 327-340, 2010, https://doi.org/10.1016/j.atmosres.2010.07.011.        Google Scholar

39. Lamb, H. H., Climate: Present, Past and Future (Routledge Revivals): Volume 2: Climatic History and the Future, Routledge, 2013, https://doi.org/10.4324/9780203804315.

40. King, J., "Weather and the Earth’s magnetic field," Nature, Vol. 247, 131-134, 1974, https://doi.org/10.1038/247131a0.        Google Scholar

41. King, J. and D. Willis, Magnetometeorology: Relationships between the weather and Earth’s magnetic field, NASA, 1975, https://ntrs.nasa.gov/search.jsp?R=19760007443.

42. Svensmark, H. and E. Friis-Christensen, "Variation of cosmic ray flux and global cloud coverage — A missing link in solar-climate relationships," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 59, 1225-1232, 1997, https://doi.org/10.1016/s1364-6826(97)00001-1.        Google Scholar

43. Courtillot, V., Y. Gallet, J.-L. Le Mouel, F. Fluteau, and A. Genevey, "Are there connections between the Earth’s magnetic field and climate?," Earth and Planetary Science Letters, Vol. 253, 328-339, 2007, http://dx.doi.org/10.1016/j.epsl.2006.10.032.        Google Scholar

44. Knudsen, M. F. and P. Riisager, "Is there a link between Earth’s magnetic field and low-latitude precipitation?," Geology, Vol. 37, 71-74, 2009, https://doi.org/10.1130/g25238a.1.        Google Scholar

45. Anderson, R. Y., "Possible connection between surface winds, solar activity and the Earth’s magnetic field," Nature, Vol. 358, 51-53, 1992, https://doi.org/10.1038/358051a0.        Google Scholar

46. Schlegel, K., G. Diendorfer, S. Thern, and M. Schmidt, "Thunderstorms, lightning and solar activity — Middle Europe," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 63, 1705-1713, 2001, https://doi.org/10.1016/s1364-6826(01)00053-0.        Google Scholar

47. Gurevich, A. V. and K. P. Zybin, "Runaway breakdown and the mysteries of lightning," Phys. Today, Vol. 58, 37-43, 2005, https://doi.org/10.1063/1.1995746.        Google Scholar

48. Babich, L. P., E. I. Bochkov, J. R. Dwyer, and I. M. Kutsyk, "Numerical simulations of local thundercloud field enhancements caused by runaway avalanches seeded by cosmic rays and their role in lightning initiation," Journal of Geophysical Research: Space Physics, Vol. 117, 2012, https://doi.org/10.1029/2012ja017799.        Google Scholar

49. Lindy, N., E. Benton, W. Beasley, and D. Petersen, "Energetic cosmic-ray secondary electron distribution at thunderstorm altitudes," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 179, 435-440, 2018, https://doi.org/10.1016/j.jastp.2018.10.003.        Google Scholar

50. Jeon, J., S.-J. Noh, and D.-H. Lee, "Relationship between lightning and solar activity for recorded between CE 1392–1877 in Korea," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 172, 63-68, 2018, https://doi.org/10.1016/j.jastp.2018.03.020.        Google Scholar

51. Collier, A. and A. Hughes, "A harmonic model for the temporal variation of lightning activity over Africa," Journal of Geophysical Research: Atmospheres, Vol. 116, 2011, https://doi.org/10.1029/2010JD014455.        Google Scholar

52. Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, "Gridded lightning climatology from TRMM-LIS and OTD: Dataset description," Atmospheric Research, Vol. 135, 404-414, 2014, https://dx.doi.org/10.5067/LIS/LIS-OTD/DATA311.        Google Scholar

53. Kuleshov, Y., D. Mackerras, and M. Darveniza, "Spatial distribution and frequency of lightning activity and lightning flash density maps for Australia," Journal of Geophysical Research: Atmospheres, Vol. 111, 2006, https://doi.org/10.1029/2005JD006982.        Google Scholar

54. Lapierre, J., M. Hoekzema, M. Stock, C. Merrill, and S. C. Thangaraj, "Earth networks lightning network and dangerous thunderstorm alerts," 2019 11th Asia-Pacific International Conference on Lightning (APL), 1-5, IEEE, 2019, https://doi.org/10.1109/APL.2019.8816032.        Google Scholar

55. Kuettner, J. P., J. D. Sartor, and Z. Levin, "Thunderstorm electrification — Inductive or non-inductive?," Journal of the Atmospheric Sciences, Vol. 38, 2470-2484, 1981, https://doi.org/10.1175/1520-0469(1981)038%3C2470:teoni%3E2.0.co;2.        Google Scholar

56. Christian, H., C. Holmes, J. Bullock, W. Gaskell, A. Illingworth, and J. Latham, "Air-borne and ground-based studies of thunderstorms in the vicinity of Langmuir Laboratory," Quarterly Journal of the Royal Meteorological Society, Vol. 106, 159-174, 1980, https://doi.org/10.1002/qj.49710644711.        Google Scholar