Vol. 92
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-05-12
A High Gain Inverse Concentric Yagi Director Antenna for 5G Millimetre-Wave and Satellite Communication
By
Progress In Electromagnetics Research B, Vol. 92, 127-148, 2021
Abstract
A novel high gain two port planar antenna for 5G millimetre-wave and satellite band is presented. The proposed antenna besides working in the millimetre-wave range has an added feature to work for the satellite X-band as well. The antenna has a miniaturised low-cost planar geometry having the dimensions of 1.83λ x 1.83λ x 0.07λ at 27.5 GHz, designed and fabricated on a Rogers RT/duroid substrate of thickness 0.8 mm. The proposed antenna has return loss values of 12.34 dB and 17.94 dB for the two resonant millimetre wave frequencies of 27.24 GHz and 28.88 GHz respectively and 12.66 dB for the satellite band frequency of 8.42 GHz. The antenna attains a peak gain of 10.2 dBi for 28 GHz millimetre wave band and 6.2 dBi for satellite X-band by exploiting an inverse micro-strip Yagi director geometry. The isolation between two ports has been found satisfactory thus making it operate efficiently forthe available Ka and X band capacity of the Wideband Global Satcom system (WGS). The experimental results regarding the fabricated prototype are presented and compared with the simulated results, which are in good agreement. The performance of proposed antenna regarding radiation efficiency, directivity, gain, radiation pattern, and good isolation between the two ports makes the antenna employed as a suitable candidate for satellite communication and especially for 5G millimetre-wave communication.
Citation
Raqeebur Rehman, Javaid Ahmad Sheikh, Khurshed A. Shah, and Ghulam Mohiuddin Bhat, "A High Gain Inverse Concentric Yagi Director Antenna for 5G Millimetre-Wave and Satellite Communication," Progress In Electromagnetics Research B, Vol. 92, 127-148, 2021.
doi:10.2528/PIERB21040501
References

1. Ayanoglu, E., A. L. Swindlehurst, P. Heydari, and F. Capolino, "Millimeter-wave massive MIMO: The next wireless revolution," IEEE Communications Mag., Vol. 52, No. 9, 56-62, 2014.
doi:10.1109/MCOM.2014.6894453

2. Rappaport, T. S., R. H. Mayzus, and S. Zhao, "Millimeter-wave mobile communications for 5G: It will work!," IEEE Acces., Vol. 1, No. 1, 225-349, 2013.

3. Roh, W., J. Park, J. H. Park, and J. Y. Seol, "Millimeter-wave beam-forming as an enabling tech. for 5G cellular communications: Theoretical feasibility & prototype results," IEEE Com., Vol. 52, No. 2, 106-113, 2016.
doi:10.1109/MCOM.2014.6736750

4. Kim, Y. and H. Lee, "Feasibility of mobile cellular communications at millimetre wave frequency," IEEE Journ. of Selected Topics in Signal Procesg., Vol. 10, No. 3, 589-599, 2016.
doi:10.1109/JSTSP.2016.2520901

5. Wang, H., D. G. Fang, B. Zhang, and W. Q. Che, "Dielectric loaded SIW H-plane horn antennas," IEEE Trans. Antennas and Propa., Vol. 58, No. 3, 640-647, 2010.
doi:10.1109/TAP.2009.2039298

6. Li, M. and K. M. Luk, "Wideband 60-GHz magneto-electric dipole antenna for mmWave communications," IEEE Trans. Antennas and Propa., Vol. 63, No. 7, 3276-3279, 2015.
doi:10.1109/TAP.2015.2425418

7. Zhang, Y., X. Qing, Z. N. Chen, and W. Hong, "Wideband mmWave SIW slotted narrow-wall fed cavity antennas," IEEE Trans. Antennas and Propa., Vol. 59, No. 5, 1488-1496, 2011.
doi:10.1109/TAP.2011.2123055

8. Yang, T. Y., W. Hong, and Y. Zhang, "Wideband mmWave SIW cavity-backed rectangular patch antenna," IEEE Anten. Wireless Propag. Lett., Vol. 13, 205-208, 2014.
doi:10.1109/LAWP.2014.2300194

9. Djerafi, T. and K. Wu, "Corrugated substrate integrated waveguide (SIW) antipodal linearly tapered slot antenna array fed by quasi-triangular power divider," Progress In Electromagnetics Research C, Vol. 26, 139-151, 2012.
doi:10.2528/PIERC11091912

10. Ghiotto, A., F. Parment, K. Wu, and T. P. Vuong, "Millimeter-wave air-filled substrate integrated waveguide antipodal linearly tapered slot antenna," IEEE Anten. Wireless Propag. Lett., Vol. 24, No. 5, 1-4, 2016.

11. Fan, K., Z.-C. Hao, Q. Yuan, J. Hu, G. Q. Luo, and W. Hong, "Wideband horizontally polarized omni-directional antenna with a conical beam for millimeter-wave applications," IEEE Trans. Antennas and Propa., Vol. 66, No. 9, 4437-4448, 2018.
doi:10.1109/TAP.2018.2851363

12. Ali, W., S. Das, H. Medkour, and S. Lakrit, "Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications," Microsystem Tech., Vol. 27, No. 1, 283-292, 2021.
doi:10.1007/s00542-020-04951-1

13. Yang, B., et al. "Compact tapered slot millimeter-wave antenna array for massive MIMO 5G systems," IEEE Trans. Antennas and Propa., Vol. 65, No. 12, 6721-6727, 2017.
doi:10.1109/TAP.2017.2700891

14. Kumar, A., M. S. Mahendra, and P. Y. Rajendra, "Dual wideband circular polarised CPW-fed strip and slots loaded compact square slot antenna for wireless and satellite applications," AEU-International Journ. of Electronics and Commun., Vol. 108, 181-188, 2019.

15. Ghazizadeh, M. H. and M. Fakharzadeh, "60 GHz omni-directional segmented loop antenna," IEEE Internat. Symp. on Ant. and Propagation, 1653-1654, Fajardo, U.S.A, June–July 2016.

16. Rehman, R., J. A. Sheikh, and Z. A. Bhat, "A novel high gain two port antenna for licensed and unlicensed millimeter-wave communication," 2020 IEEE International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 1-5, Vellore, India, February 2020.

17. Zhou, Z., Z. Wei, Z. Tang, and Y. Yin, "Design and analysis of a high isolation wideband multiple-microstrip antenna dipole," IEEE Anten. Wireless Propag. Lett., Vol. 18, No. 4, 722-726, 2019.
doi:10.1109/LAWP.2019.2901838

18. Tang, M. C., et al. "Compact tri-polarization diversity wideband, reconfigurable and wideband filtenna," IEEE Trans. Antennas and Propa., Vol. 67, No. 8, 5689-5694, 2019.
doi:10.1109/TAP.2019.2920298

19. Wang, J., et al. "Graphene-based microwave antennas with reconfigurable pattern," IEEE Trans. Antennas and Propa., Vol. 68, No. 4, 2504-2510, 2019.
doi:10.1109/TAP.2019.2952239

20. Hussain, S., S. W. Qu, W. L. Zhou, P. Zhang, and S. Yang, "Design and fabrication of wideband dual-polarized dipole array for 5G wireless systems," IEEE Acces., Vol. 8, 65155-65163, 2020.
doi:10.1109/ACCESS.2020.2984613

21. Wu, G. B., et al. "High-gain filtering reflect-array antenna for millimeter-wave applications," IEEE Trans. Antennas and Propa., Vol. 68, No. 2, 805-812, 2020.
doi:10.1109/TAP.2019.2943432

22. Farahat, A. E. and K. F. A. Hussein, "28/38 GHz dual-band Yagi-Uda antenna with corrugated radiator and enhanced reflectors for 5G MIMO antenna systems," Progress In Electromagnetics Research C, Vol. 101, 159-172, 2020.
doi:10.2528/PIERC20022603

23. Kaur, A. and P. K. Malik, "Multiband elliptical patch fractal and defected ground structures microstrip patch antenna for wireless applications," Progress In Electromagnetics Research B, Vol. 91, 157-173, 2021.
doi:10.2528/PIERB20102704