1. Ayanoglu, E., A. L. Swindlehurst, P. Heydari, and F. Capolino, "Millimeter-wave massive MIMO: The next wireless revolution," IEEE Communications Mag., Vol. 52, No. 9, 56-62, 2014.
doi:10.1109/MCOM.2014.6894453 Google Scholar
2. Rappaport, T. S., R. H. Mayzus, and S. Zhao, "Millimeter-wave mobile communications for 5G: It will work!," IEEE Acces., Vol. 1, No. 1, 225-349, 2013. Google Scholar
3. Roh, W., J. Park, J. H. Park, and J. Y. Seol, "Millimeter-wave beam-forming as an enabling tech. for 5G cellular communications: Theoretical feasibility & prototype results," IEEE Com., Vol. 52, No. 2, 106-113, 2016.
doi:10.1109/MCOM.2014.6736750 Google Scholar
4. Kim, Y. and H. Lee, "Feasibility of mobile cellular communications at millimetre wave frequency," IEEE Journ. of Selected Topics in Signal Procesg., Vol. 10, No. 3, 589-599, 2016.
doi:10.1109/JSTSP.2016.2520901 Google Scholar
5. Wang, H., D. G. Fang, B. Zhang, and W. Q. Che, "Dielectric loaded SIW H-plane horn antennas," IEEE Trans. Antennas and Propa., Vol. 58, No. 3, 640-647, 2010.
doi:10.1109/TAP.2009.2039298 Google Scholar
6. Li, M. and K. M. Luk, "Wideband 60-GHz magneto-electric dipole antenna for mmWave communications," IEEE Trans. Antennas and Propa., Vol. 63, No. 7, 3276-3279, 2015.
doi:10.1109/TAP.2015.2425418 Google Scholar
7. Zhang, Y., X. Qing, Z. N. Chen, and W. Hong, "Wideband mmWave SIW slotted narrow-wall fed cavity antennas," IEEE Trans. Antennas and Propa., Vol. 59, No. 5, 1488-1496, 2011.
doi:10.1109/TAP.2011.2123055 Google Scholar
8. Yang, T. Y., W. Hong, and Y. Zhang, "Wideband mmWave SIW cavity-backed rectangular patch antenna," IEEE Anten. Wireless Propag. Lett., Vol. 13, 205-208, 2014.
doi:10.1109/LAWP.2014.2300194 Google Scholar
9. Djerafi, T. and K. Wu, "Corrugated substrate integrated waveguide (SIW) antipodal linearly tapered slot antenna array fed by quasi-triangular power divider," Progress In Electromagnetics Research C, Vol. 26, 139-151, 2012.
doi:10.2528/PIERC11091912 Google Scholar
10. Ghiotto, A., F. Parment, K. Wu, and T. P. Vuong, "Millimeter-wave air-filled substrate integrated waveguide antipodal linearly tapered slot antenna," IEEE Anten. Wireless Propag. Lett., Vol. 24, No. 5, 1-4, 2016. Google Scholar
11. Fan, K., Z.-C. Hao, Q. Yuan, J. Hu, G. Q. Luo, and W. Hong, "Wideband horizontally polarized omni-directional antenna with a conical beam for millimeter-wave applications," IEEE Trans. Antennas and Propa., Vol. 66, No. 9, 4437-4448, 2018.
doi:10.1109/TAP.2018.2851363 Google Scholar
12. Ali, W., S. Das, H. Medkour, and S. Lakrit, "Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications," Microsystem Tech., Vol. 27, No. 1, 283-292, 2021.
doi:10.1007/s00542-020-04951-1 Google Scholar
13. Yang, B., et al. "Compact tapered slot millimeter-wave antenna array for massive MIMO 5G systems," IEEE Trans. Antennas and Propa., Vol. 65, No. 12, 6721-6727, 2017.
doi:10.1109/TAP.2017.2700891 Google Scholar
14. Kumar, A., M. S. Mahendra, and P. Y. Rajendra, "Dual wideband circular polarised CPW-fed strip and slots loaded compact square slot antenna for wireless and satellite applications," AEU-International Journ. of Electronics and Commun., Vol. 108, 181-188, 2019. Google Scholar
15. Ghazizadeh, M. H. and M. Fakharzadeh, "60 GHz omni-directional segmented loop antenna," IEEE Internat. Symp. on Ant. and Propagation, 1653-1654, Fajardo, U.S.A, June–July 2016. Google Scholar
16. Rehman, R., J. A. Sheikh, and Z. A. Bhat, "A novel high gain two port antenna for licensed and unlicensed millimeter-wave communication," 2020 IEEE International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 1-5, Vellore, India, February 2020. Google Scholar
17. Zhou, Z., Z. Wei, Z. Tang, and Y. Yin, "Design and analysis of a high isolation wideband multiple-microstrip antenna dipole," IEEE Anten. Wireless Propag. Lett., Vol. 18, No. 4, 722-726, 2019.
doi:10.1109/LAWP.2019.2901838 Google Scholar
18. Tang, M. C., et al. "Compact tri-polarization diversity wideband, reconfigurable and wideband filtenna," IEEE Trans. Antennas and Propa., Vol. 67, No. 8, 5689-5694, 2019.
doi:10.1109/TAP.2019.2920298 Google Scholar
19. Wang, J., et al. "Graphene-based microwave antennas with reconfigurable pattern," IEEE Trans. Antennas and Propa., Vol. 68, No. 4, 2504-2510, 2019.
doi:10.1109/TAP.2019.2952239 Google Scholar
20. Hussain, S., S. W. Qu, W. L. Zhou, P. Zhang, and S. Yang, "Design and fabrication of wideband dual-polarized dipole array for 5G wireless systems," IEEE Acces., Vol. 8, 65155-65163, 2020.
doi:10.1109/ACCESS.2020.2984613 Google Scholar
21. Wu, G. B., et al. "High-gain filtering reflect-array antenna for millimeter-wave applications," IEEE Trans. Antennas and Propa., Vol. 68, No. 2, 805-812, 2020.
doi:10.1109/TAP.2019.2943432 Google Scholar
22. Farahat, A. E. and K. F. A. Hussein, "28/38 GHz dual-band Yagi-Uda antenna with corrugated radiator and enhanced reflectors for 5G MIMO antenna systems," Progress In Electromagnetics Research C, Vol. 101, 159-172, 2020.
doi:10.2528/PIERC20022603 Google Scholar
23. Kaur, A. and P. K. Malik, "Multiband elliptical patch fractal and defected ground structures microstrip patch antenna for wireless applications," Progress In Electromagnetics Research B, Vol. 91, 157-173, 2021.
doi:10.2528/PIERB20102704 Google Scholar