Multidisciplinary Faculty of Taza
Sidi Mohamed Ben Abdellah University
Morocco
Homepage1. Keshavarz, S., R. Keshavarz, and A. Abdipour, "Compact active duplexer based on CSRR and interdigital loaded microstrip coupled lines for LTE application," Progress In Electromagnetics Research C, Vol. 109, 27-37, 2012.
doi:10.2528/PIERC20112307 Google Scholar
2. Ben-ali, Y., I. El Kadmiri, Z. Tahri, and D. Bria, "Defects modes in one-dimensional photonic filter star waveguide structure," Materials Today: Proceeding, Vol. 27, 3042-3050, 2020.
doi:10.1016/j.matpr.2020.03.525 Google Scholar
3. Keshavarz, S., A. Abdipour, A. Mohammadi, and R. Keshavarz, "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," AEU-International Journal of Electronics and Communications, Vol. 111, 152913-152913, 2019.
doi:10.1016/j.aeue.2019.152913 Google Scholar
4. Tan, W., Y. Sun, Z. G. Wang, and H. Chen, "Propagation of photons in metallic chain through side-branch resonators," Journal of Physics D: Applied Physics, Vol. 44, 335101-335106, 2011.
doi:10.1088/0022-3727/44/33/335101 Google Scholar
5. Tan, W., Z. G. Wang, and H. Chen, "Complete tunning of light through mu-negative media," Progress In Electromagnetics Research M, Vol. 8, 27-37, 2009.
doi:10.2528/PIERM09060201 Google Scholar
6. Cocoletzi, G., H. L. Dobrzynski, B. Djafari-Rouhani, H. Al-Wahsh, and D. Bria, "Electromagnetic wave propagation in quasi-one-dimensional comb-like structures made up of dissipative negative-phase-velocity materials," Journal of Physics: Condensed Matter, J. Phys, Condens. Matter, Vol. 18, 3683-3690, 2006.
doi:10.1088/0953-8984/18/15/014 Google Scholar
7. Yin, C. P. and H. Z. Wang, "Narrow transmission bands of quasi-1D comb-like photonic waveguides containing negative index materials," Physics Letters. A, Vol. 373, 1093-1096, 2009.
doi:10.1016/j.physleta.2009.01.029 Google Scholar
8. Weng, Y., Z. G. Wang, and H. Chen, "Band structure of comb-like photonic crystals containing metamaterial," Optics Communications, Vol. 277, 80-83, 2007.
doi:10.1016/j.optcom.2007.04.049 Google Scholar
9. Zhang, L., Z. Wang, H. Chen, H. Li, and Y. Zhang, "Experimental study of quasi-one-dimensional comb- like photonic crystals containing left-handed material," Optics communications, Vol. 281, 3681-3685, 2008.
doi:10.1016/j.optcom.2008.03.042 Google Scholar
10. Keshavarz, S. and N. Nozhat, "Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 1-4, 2016. Google Scholar
11. Ghoumid, K., A. Ghadban, S. Boukricha, E. M. Arreyouchi, R. Yahiaoui, S. Mekaoui, and M. Raschetti, "Spectral coded phase bipolar OCDMA technological implementation thanks to low index modulation filters," Telecommunication Systems, Vol. 73, 433-441, 2020.
doi:10.1007/s11235-019-00610-7 Google Scholar
12. Studenkov, P. V., M. R. Gokhale, W. Lin, I. Glesk, P. R. Prucnal, and S. R. Forrest, "Monolithic integration of an all-optical Mach-Zehnderdemultiplexer using an asymmetric twin-waveguide structure," IEEE Photonics Technology Letters, Vol. 13, 600-602, 2011.
doi:10.1109/68.924035 Google Scholar
13. Ghoumid, K., B. E. Benkelfat, R. Ferriere, and T. Gharbi, "Wavelength-selective Ti:LiNbO3 multiple Y-branch coupler based on focused ion beam milled bragg reflectors," Journal of lightwave technology, Vol. 29, 3536-3541, 2011.
doi:10.1109/JLT.2011.2170056 Google Scholar
14. Fukazawa, T., F. Ohno, and T. Baba, "Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides," Japanese Journal of Applied Physics, Vol. 43, L673-L677, 2004.
doi:10.1143/JJAP.43.L673 Google Scholar
15. Ghorbanpour, H. and S. Makouei, "2-channel all optical demultiplexer based on photonic crystal ring resonator," Frontiers of Optoelectronics, Vol. 6, 224-227, 2013.
doi:10.1007/s12200-013-0322-1 Google Scholar
16. Rostami, A., H. Alipour Banaei, F. Nazari, and A. Bahrami, "An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure," Optik, Vol. 122, 1481-1485, 2010.
doi:10.1016/j.ijleo.2010.05.036 Google Scholar
17. Alipour-Banaei, H., S. Serajmohammadi, and F. Mehdizadeh, "Optical wavelength demultiplexer based on photonic crystal ring resonators," Photonic Network Communications, Vol. 29, 146-150, 2014.
doi:10.1007/s11107-014-0483-x Google Scholar
18. Azzazi, A. and M. A. Swillam, "Nanoscale highly selective plasmonic quad wavelength demultiplexer based on a metal-insulator-metal," Optics Communications, Vol. 344, 106-112, 2015.
doi:10.1016/j.optcom.2015.01.014 Google Scholar
19. Khani, S., M. Danaie, and P. Rezaei, "Double and triple-wavelength plasmonicdemultiplexers based on improved circular nanodisk resonators," Optical Engineering, Vol. 57, 107102-107112, 2018.
doi:10.1117/1.OE.57.10.107102 Google Scholar
20. Xie, Y. Y., C. He, J. C. Li, T. T. Song, Z. D. Zhang, and Q. R. Mao, "Theoretical investigation of a plasmonic demultiplexer in MIM waveguide crossing with multiple side-coupled hexagonal resonators," IEEE Photonics Journal, Vol. 8, 84802512-84802520, 2016. Google Scholar
21. Mouadili, A., E. H. El Boudouti, and B. Djafari-Rouhani, "Acoustic demultiplexer based on Fano and induced transparency resonances in slender tubes," European Physical Journal --- Applied Physics, Vol. 20, 1-8, 2020. Google Scholar
22. Ben-ali, Y., Z. Tahri, F. Falyouni, and D. Bria, "Study about a filter using a resonator defect in a one- dimensional photonic comb containing a left-hand material," ICEERE, Vol. 519, 146-156, 2018. Google Scholar
23. Ben-ali, Y., Z. Tahri, A. Ouariach, and D. Bria, "Double frequency filtering by photonic comb-like," 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 2019. Google Scholar
24. Ben-Ali, Y., Z. Tahri, and D. Bria, "Electromagnetic filters based on a single negative photonic comb-like structure," Progress In Electromagnetics Research, Vol. 92, 41-56, 2019.
doi:10.2528/PIERC18122001 Google Scholar
25. Ben-ali, Y., A. Ghadban, Z. Tahri, K. Ghoumid, and D. Bria, "Accordable filters by defect modes in single and double negative star waveguides grafted dedicated to electromagnetic communications applications," Journal of Electromagnetic Waves and Applications, Vol. 34, 1-20, 2020.
doi:10.1080/09205071.2019.1696237 Google Scholar
26. Dolorzynski, L., A. Akjouj, B. Djafari-Rouhani, J. O. Vasseur, and J. Zemmouri, "Giant gaps in photonic band structures," Phys. Rev. B, Vol. 57, 9388-9391, 1998.
doi:10.1103/PhysRevB.57.R9388 Google Scholar
27. Djafari Rouhani, B., J. O. Vasseur, A. Akjouj, L. Dobrzynski, M. S. Kushwaha, P. Deymier, and J. Zemmouri, "Giant stop bands and defect modes in one-dimensional waveguide with dangling side branches," Progress in Surface Science, Vol. 59, 255-264, 1998.
doi:10.1016/S0079-6816(98)00051-3 Google Scholar
28. Djafari-Rouhani, B., E. H. El Boudouti, A. Akjouj, L. Dobrzynski, J. O. Vasseur, A. Mir, N. Fettouhi, and J. Zemmouri, "Surface states in one-dimensional photonic band gap structures," Vacuum, Vol. 63, 177-183, 2001.
doi:10.1016/S0042-207X(01)00188-9 Google Scholar
29. Vasseur, J. O., P. A. Deymier, L. Dolorzynski, B. Djafari-Rouhani, and A. F. Akjouj, "Defect modes in one-dimensional comblike photonic waveguides," Phys. Rev. B, Vol. 59, 13446-13452, 1999.
doi:10.1103/PhysRevB.59.13446 Google Scholar
30. Mouadili, A., E. H. El Boudouti, A. Soltani, A. Talbi, K. Haddadi, A. Akjouj, and B. Djafari-Rouhani, "Photonic demultiplexer based on electromagnetically induced transparency resonances," Journal of Physics D: Applied Physics, Vol. 52, 075101-075125, 2018.
doi:10.1088/1361-6463/aaf11b Google Scholar
31. El Kadmiri, I., Y. Ben-Ali, A. Khaled, and D. Bria, "Y-shaped branch structure using asymmetric resonators for phononic demultiplexing," Materials Today: Proceedings, Vol. 27, 3033-3041, 2020.
doi:10.1016/j.matpr.2020.03.521 Google Scholar
32. Mouadili, A., E. H. El Boudouti, and B. Djafari-Rouhani, "Acoustic demultiplexer based on Fano and induced transparency resonances in slender tube," European Physical Journal --- Applied Physics, Vol. 90, 1-8, 2020.
doi:10.1051/epjap/2020190324 Google Scholar
33. Borgese, L., M. Salmistraro, A. Gianoncelli, A. Zacco, R. Lucchini, N. Zimmerman, and E. Bontempi, "Airborne particulate matter (PM) filter analysis and modeling by total reflection X-ray fluorescence (TXRF) and X-ray standing wave (XSW)," Talanta, Vol. 27, R713-R715, 2011. Google Scholar
34. Soltani, A., T. Probst, S. F. Busch, M. Schwerdtfeger, E. Castro-Camus, and M. Koch, "Error from delay drift in terahertz attenuated total reflection spectroscopy," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 35, 468-477, 2014.
doi:10.1007/s10762-014-0054-3 Google Scholar
35. Hands, J. R., K. M. Dorling, P. Abel, K. M. Ashton, A. Brodbelt, C. Davis, and M. J. Baker, "Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectral discrimination of brain tumour severity from serum samples," Journal of biophotonics, Vol. 7, 189-199, 2014.
doi:10.1002/jbio.201300149 Google Scholar
36. Anderson, N. R. and R. E. Camley, "Attenuated total reflection study of bulk and surface polaritons in antiferromagnets and hexagonal ferrites: Propagation at arbitrary angles," J. Appl. Phys., Vol. 113, 013904-013917, 2013.
doi:10.1063/1.4770467 Google Scholar
37. Ouchani, N., D. Bria, B. Djafari-Rouhani, and A. Nougaoui, "Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal," JOSA A, Vol. 24, 2710-2718, 2007.
doi:10.1364/JOSAA.24.002710 Google Scholar
38. Tayebi, B., J. H. Han, F. Sharif, M. R. Jafarfard, and D. Y. Kim, "Compact single-shot four-wavelength quantitative phase microscopy with polarization- and frequency-division demultiplexing," Optics Express, Vol. 25, 20172-20182, 2017.
doi:10.1364/OE.25.020172 Google Scholar
39. Garcia, R. C., J. O. Pinto, W. I. Suemitsu, and J. O. Soares, "Improved demultiplexing algorithm for hardware simplification of sensored vector control through frequency-domain multiplexing," IEEE Transactions on Industrial Electronics, Vol. 64, 6538-6548, 2017.
doi:10.1109/TIE.2017.2682780 Google Scholar