1. Keshavarz, S., R. Keshavarz, and A. Abdipour, "Compact active duplexer based on CSRR and interdigital loaded microstrip coupled lines for LTE application," Progress In Electromagnetics Research C, Vol. 109, 27-37, 2012.
doi:10.2528/PIERC20112307
2. Ben-ali, Y., I. El Kadmiri, Z. Tahri, and D. Bria, "Defects modes in one-dimensional photonic filter star waveguide structure," Materials Today: Proceeding, Vol. 27, 3042-3050, 2020.
doi:10.1016/j.matpr.2020.03.525
3. Keshavarz, S., A. Abdipour, A. Mohammadi, and R. Keshavarz, "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," AEU-International Journal of Electronics and Communications, Vol. 111, 152913-152913, 2019.
doi:10.1016/j.aeue.2019.152913
4. Tan, W., Y. Sun, Z. G. Wang, and H. Chen, "Propagation of photons in metallic chain through side-branch resonators," Journal of Physics D: Applied Physics, Vol. 44, 335101-335106, 2011.
doi:10.1088/0022-3727/44/33/335101
5. Tan, W., Z. G. Wang, and H. Chen, "Complete tunning of light through mu-negative media," Progress In Electromagnetics Research M, Vol. 8, 27-37, 2009.
doi:10.2528/PIERM09060201
6. Cocoletzi, G., H. L. Dobrzynski, B. Djafari-Rouhani, H. Al-Wahsh, and D. Bria, "Electromagnetic wave propagation in quasi-one-dimensional comb-like structures made up of dissipative negative-phase-velocity materials," Journal of Physics: Condensed Matter, J. Phys, Condens. Matter, Vol. 18, 3683-3690, 2006.
doi:10.1088/0953-8984/18/15/014
7. Yin, C. P. and H. Z. Wang, "Narrow transmission bands of quasi-1D comb-like photonic waveguides containing negative index materials," Physics Letters. A, Vol. 373, 1093-1096, 2009.
doi:10.1016/j.physleta.2009.01.029
8. Weng, Y., Z. G. Wang, and H. Chen, "Band structure of comb-like photonic crystals containing metamaterial," Optics Communications, Vol. 277, 80-83, 2007.
doi:10.1016/j.optcom.2007.04.049
9. Zhang, L., Z. Wang, H. Chen, H. Li, and Y. Zhang, "Experimental study of quasi-one-dimensional comb- like photonic crystals containing left-handed material," Optics communications, Vol. 281, 3681-3685, 2008.
doi:10.1016/j.optcom.2008.03.042
10. Keshavarz, S. and N. Nozhat, "Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 1-4, 2016.
11. Ghoumid, K., A. Ghadban, S. Boukricha, E. M. Arreyouchi, R. Yahiaoui, S. Mekaoui, and M. Raschetti, "Spectral coded phase bipolar OCDMA technological implementation thanks to low index modulation filters," Telecommunication Systems, Vol. 73, 433-441, 2020.
doi:10.1007/s11235-019-00610-7
12. Studenkov, P. V., M. R. Gokhale, W. Lin, I. Glesk, P. R. Prucnal, and S. R. Forrest, "Monolithic integration of an all-optical Mach-Zehnderdemultiplexer using an asymmetric twin-waveguide structure," IEEE Photonics Technology Letters, Vol. 13, 600-602, 2011.
doi:10.1109/68.924035
13. Ghoumid, K., B. E. Benkelfat, R. Ferriere, and T. Gharbi, "Wavelength-selective Ti:LiNbO3 multiple Y-branch coupler based on focused ion beam milled bragg reflectors," Journal of lightwave technology, Vol. 29, 3536-3541, 2011.
doi:10.1109/JLT.2011.2170056
14. Fukazawa, T., F. Ohno, and T. Baba, "Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides," Japanese Journal of Applied Physics, Vol. 43, L673-L677, 2004.
doi:10.1143/JJAP.43.L673
15. Ghorbanpour, H. and S. Makouei, "2-channel all optical demultiplexer based on photonic crystal ring resonator," Frontiers of Optoelectronics, Vol. 6, 224-227, 2013.
doi:10.1007/s12200-013-0322-1
16. Rostami, A., H. Alipour Banaei, F. Nazari, and A. Bahrami, "An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure," Optik, Vol. 122, 1481-1485, 2010.
doi:10.1016/j.ijleo.2010.05.036
17. Alipour-Banaei, H., S. Serajmohammadi, and F. Mehdizadeh, "Optical wavelength demultiplexer based on photonic crystal ring resonators," Photonic Network Communications, Vol. 29, 146-150, 2014.
doi:10.1007/s11107-014-0483-x
18. Azzazi, A. and M. A. Swillam, "Nanoscale highly selective plasmonic quad wavelength demultiplexer based on a metal-insulator-metal," Optics Communications, Vol. 344, 106-112, 2015.
doi:10.1016/j.optcom.2015.01.014
19. Khani, S., M. Danaie, and P. Rezaei, "Double and triple-wavelength plasmonicdemultiplexers based on improved circular nanodisk resonators," Optical Engineering, Vol. 57, 107102-107112, 2018.
doi:10.1117/1.OE.57.10.107102
20. Xie, Y. Y., C. He, J. C. Li, T. T. Song, Z. D. Zhang, and Q. R. Mao, "Theoretical investigation of a plasmonic demultiplexer in MIM waveguide crossing with multiple side-coupled hexagonal resonators," IEEE Photonics Journal, Vol. 8, 84802512-84802520, 2016.
21. Mouadili, A., E. H. El Boudouti, and B. Djafari-Rouhani, "Acoustic demultiplexer based on Fano and induced transparency resonances in slender tubes," European Physical Journal --- Applied Physics, Vol. 20, 1-8, 2020.
22. Ben-ali, Y., Z. Tahri, F. Falyouni, and D. Bria, "Study about a filter using a resonator defect in a one- dimensional photonic comb containing a left-hand material," ICEERE, Vol. 519, 146-156, 2018.
23. Ben-ali, Y., Z. Tahri, A. Ouariach, and D. Bria, "Double frequency filtering by photonic comb-like," 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 2019.
24. Ben-Ali, Y., Z. Tahri, and D. Bria, "Electromagnetic filters based on a single negative photonic comb-like structure," Progress In Electromagnetics Research, Vol. 92, 41-56, 2019.
doi:10.2528/PIERC18122001
25. Ben-ali, Y., A. Ghadban, Z. Tahri, K. Ghoumid, and D. Bria, "Accordable filters by defect modes in single and double negative star waveguides grafted dedicated to electromagnetic communications applications," Journal of Electromagnetic Waves and Applications, Vol. 34, 1-20, 2020.
doi:10.1080/09205071.2019.1696237
26. Dolorzynski, L., A. Akjouj, B. Djafari-Rouhani, J. O. Vasseur, and J. Zemmouri, "Giant gaps in photonic band structures," Phys. Rev. B, Vol. 57, 9388-9391, 1998.
doi:10.1103/PhysRevB.57.R9388
27. Djafari Rouhani, B., J. O. Vasseur, A. Akjouj, L. Dobrzynski, M. S. Kushwaha, P. Deymier, and J. Zemmouri, "Giant stop bands and defect modes in one-dimensional waveguide with dangling side branches," Progress in Surface Science, Vol. 59, 255-264, 1998.
doi:10.1016/S0079-6816(98)00051-3
28. Djafari-Rouhani, B., E. H. El Boudouti, A. Akjouj, L. Dobrzynski, J. O. Vasseur, A. Mir, N. Fettouhi, and J. Zemmouri, "Surface states in one-dimensional photonic band gap structures," Vacuum, Vol. 63, 177-183, 2001.
doi:10.1016/S0042-207X(01)00188-9
29. Vasseur, J. O., P. A. Deymier, L. Dolorzynski, B. Djafari-Rouhani, and A. F. Akjouj, "Defect modes in one-dimensional comblike photonic waveguides," Phys. Rev. B, Vol. 59, 13446-13452, 1999.
doi:10.1103/PhysRevB.59.13446
30. Mouadili, A., E. H. El Boudouti, A. Soltani, A. Talbi, K. Haddadi, A. Akjouj, and B. Djafari-Rouhani, "Photonic demultiplexer based on electromagnetically induced transparency resonances," Journal of Physics D: Applied Physics, Vol. 52, 075101-075125, 2018.
doi:10.1088/1361-6463/aaf11b
31. El Kadmiri, I., Y. Ben-Ali, A. Khaled, and D. Bria, "Y-shaped branch structure using asymmetric resonators for phononic demultiplexing," Materials Today: Proceedings, Vol. 27, 3033-3041, 2020.
doi:10.1016/j.matpr.2020.03.521
32. Mouadili, A., E. H. El Boudouti, and B. Djafari-Rouhani, "Acoustic demultiplexer based on Fano and induced transparency resonances in slender tube," European Physical Journal --- Applied Physics, Vol. 90, 1-8, 2020.
doi:10.1051/epjap/2020190324
33. Borgese, L., M. Salmistraro, A. Gianoncelli, A. Zacco, R. Lucchini, N. Zimmerman, and E. Bontempi, "Airborne particulate matter (PM) filter analysis and modeling by total reflection X-ray fluorescence (TXRF) and X-ray standing wave (XSW)," Talanta, Vol. 27, R713-R715, 2011.
34. Soltani, A., T. Probst, S. F. Busch, M. Schwerdtfeger, E. Castro-Camus, and M. Koch, "Error from delay drift in terahertz attenuated total reflection spectroscopy," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 35, 468-477, 2014.
doi:10.1007/s10762-014-0054-3
35. Hands, J. R., K. M. Dorling, P. Abel, K. M. Ashton, A. Brodbelt, C. Davis, and M. J. Baker, "Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectral discrimination of brain tumour severity from serum samples," Journal of biophotonics, Vol. 7, 189-199, 2014.
doi:10.1002/jbio.201300149
36. Anderson, N. R. and R. E. Camley, "Attenuated total reflection study of bulk and surface polaritons in antiferromagnets and hexagonal ferrites: Propagation at arbitrary angles," J. Appl. Phys., Vol. 113, 013904-013917, 2013.
doi:10.1063/1.4770467
37. Ouchani, N., D. Bria, B. Djafari-Rouhani, and A. Nougaoui, "Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal," JOSA A, Vol. 24, 2710-2718, 2007.
doi:10.1364/JOSAA.24.002710
38. Tayebi, B., J. H. Han, F. Sharif, M. R. Jafarfard, and D. Y. Kim, "Compact single-shot four-wavelength quantitative phase microscopy with polarization- and frequency-division demultiplexing," Optics Express, Vol. 25, 20172-20182, 2017.
doi:10.1364/OE.25.020172
39. Garcia, R. C., J. O. Pinto, W. I. Suemitsu, and J. O. Soares, "Improved demultiplexing algorithm for hardware simplification of sensored vector control through frequency-domain multiplexing," IEEE Transactions on Industrial Electronics, Vol. 64, 6538-6548, 2017.
doi:10.1109/TIE.2017.2682780