1. Albreem, M. A. M., "5G wireless communication systems: Vision and challenges," 2015 International Conference on Computer, Communications, and Control Technology (I4CT), 493-497, Apr. 2015.
doi:10.1109/I4CT.2015.7219627 Google Scholar
2. Gohil, A., H. Modi, and S. K. Patel, "5G technology of mobile communication: A survey," 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), 288-292, Mar. 2013.
doi:10.1109/ISSP.2013.6526920 Google Scholar
3. Zhang, J., X. Ge, Q. Li, M. Guizani, and Y. Zhang, "5G millimeter-wave antenna array: Design and challenges," IEEE Wireless Communications, Vol. 24, No. 2, 106-112, Apr. 2017.
doi:10.1109/MWC.2016.1400374RP Google Scholar
4. Al-Ogaili, F. and R. M. Shubair, "Millimeter-wave mobile communications for 5G: Challenges and opportunities," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1003-1004, Jun. 2016.
doi:10.1109/APS.2016.7696210 Google Scholar
5. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304 Google Scholar
6. Venkatarayalu, N. V. and T. Ray, "Optimum design of Yagi-Uda antennas using computational intelligence," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 7, 1811-1818, Jul. 2004.
doi:10.1109/TAP.2004.831338 Google Scholar
7. Arceo, D. and C. A. Balanis, "A compact Yagi-Uda antenna with enhanced bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 442-445, 2011.
doi:10.1109/LAWP.2011.2150730 Google Scholar
8. Sharma, S. K. and L. Shafai, "Beam focusing properties of circular monopole array antenna on a finite ground plane," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3406-3409.
doi:10.1109/TAP.2005.856376 Google Scholar
9. Simpson, T. and J. Tillman, "Parasitic excitation of circular antenna arrays," IRE Transactions on Antennas and Propagation, Vol. 9, No. 3, 263-267, May 1961.
doi:10.1109/TAP.1961.1144996 Google Scholar
10. Kausar, S., H. U. Rahman, A. Kausar, and T. Hassan, "Espar antenna system for dynamic tracking of active targets," 2013 European Modelling Symposium, 533-535, Nov. 2013. Google Scholar
11. Kausar, A., H. Mehrpouyan, M. Sellathurai, R. Qian, and S. Kausar, "Energy efficient switched parasitic array antenna for 5G networks and IOT," 2016 Loughborough Antennas Propagation Conference (LAPC), 1-5, Nov. 2016. Google Scholar
12. Kausar, S., H. U. Rahman, T. Hassan, and A. Kausar, "Miniaturization of espar antenna using folded monopoles and conical central element," 2015 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET), 87-91, Oct. 2015. Google Scholar
13. Hou, Y., R. Ferdian, S. Denno, and M. Okada, "Low-complexity implementation of channel estimation for ESPAR-OFDM receiver," IEEE Transactions on Broadcasting, Vol. 67, No. 1, 238-252, 2021.
doi:10.1109/TBC.2020.3039679 Google Scholar
14. Hou, Y. F., "Low-complexity implementation of channel estimation for ESPAR-OFDM receiver," IEEE Transactions on Broadcasting, Vol. 67, No. 1, 238-252, 2021.
doi:10.1109/TBC.2020.3039679 Google Scholar
15. Menon, S. K., G. Marchi, M. Donelli, M. Manekiya, and V. Mulloni, "Design of an ultra wide band antenna based on a SIS resonator," Progress In Electromagnetics Research C, Vol. 103, 187-193, 2020. Google Scholar
16. Kshetrimayum, R. S., "A brief intro to metamaterials," IEEE Potentials, Vol. 23, No. 5, 44-46, Dec. 2005. Google Scholar
17. Dong, Y. and T. Itoh, "Metamaterial-based antennas," Proceedings of the IEEE, Vol. 100, No. 7, 2271-2285, Jul. 2012. Google Scholar
18. Giovampaola, C. D. and S. Maci, "Historical overview of EM metamaterials," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 693-694, Jun. 2016. Google Scholar
19. Caloz, C., "Ten applications of metamaterials," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1299-1300, Jun. 2016. Google Scholar
20. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1535-1556, Apr. 2005. Google Scholar
21. Jiang, M., Z. N. Chen, Y. Zhang, W. Hong, and X. Xuan, "Metamaterial-based thin planar lens antenna for spatial beamforming and multibeam massive MIMO," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 464-472, Feb. 2017. Google Scholar
22. Ala-Laurinaho, J., J. Aurinsalo, A. Karttunen, M. Kaunisto, A. Lamminen, J. Nurmiharju, A. V. Raisanen, J. Saily, and P. Wain, "2-D beam-steerable integrated lens antenna system for 5G E-band access and backhaul," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 2244-2255, Jul. 2016. Google Scholar
23. Cho, Y. J., G. Suk, B. Kim, D. K. Kim, and C. Chae, "RF lens-embedded antenna array for MMwave MIMO: Design and performance," IEEE Communications Magazine, Vol. 56, No. 7, 42-48, Jul. 2018. Google Scholar
24. Nguyen, N. T., N. Delhote, M. Ettorre, D. Baillargeat, L. L. Coq, and R. Sauleau, "Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2757-2762, Aug. 2010. Google Scholar
25. Yashchyshyn, Y., K. Derzakowski, G. Bogdan, K. Godziszewski, D. Nyzovets, C. H. Kim, and B. Park, "28 GHz switched-beam antenna based on S-pin diodes for 5G mobile communications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 225-228. Google Scholar
26. Huang, F., W. Chen, and M. Rao, "Switched-beam antenna array based on butler matrix for 5G wireless communication," 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 1-3, May 2016. Google Scholar
27. Alhalabi, R. A. and G. M. Rebeiz, "High-gain Yagi-Uda antennas for millimeter-wave switched beam systems," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 11, 3672-3676, Nov. 2009. Google Scholar
28. Moriyama, T., M. Manekiya, and M. Donelli, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018. Google Scholar
29. Alreshaid, A. T., O. Hammi, M. S. Sharawi, and K. Sarabandi, "A millimeter wave switched beam planar antenna array," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2117-2118, 2015. Google Scholar
30. Pozar, D. M. and T. A. Metzler, "Analysis of a reflectarray antenna using microstrip patches of variable size," Electronics Letters, Vol. 29, No. 8, 657-658, Apr. 1993. Google Scholar
31. Robinson, A. W., M. E. Bialkowski, and H. J. Song, "An X-band passive reflect-array using dualfeed aperture-coupled patch antennas," 1999 Asia Pacific Microwave Conference. APMC'99. Microwaves Enter the 21st Century. Conference Proceedings (Cat. No. 99TH8473), Vol. 3, 906-909, Nov. 1999. Google Scholar
32. Dahri, M. H., M. H. Jamaluddin, M. I. Abbasi, and M. R. Kamarudin, "A review of wideband reflectarray antennas for 5G communication systems," IEEE Access, Vol. 5, 17803-17815, 2017. Google Scholar
33. Haraz, O. M. and M. M. M. Ali, "A millimeter-wave circular reflectarray antenna for future 5G cellular networks," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1534-1535, 2015. Google Scholar
34. Shen, Y., S. Hu, and W. Dou, "38 GHz folded reflectarray antenna for point-to-point 5G communications," 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), 369-370, Jul. 2016. Google Scholar
35. Yang, Y., "Analytic solution of free space optical beam steering using risley prisms," Journal of Lightwave Technology, Vol. 26, No. 21, 3576-3583, Nov. 2008. Google Scholar
36. Tame, B. J. and N. A. Stutzke, "Steerable risley prism antennas with low side lobes in the Ka band," 2010 IEEE International Conference on Wireless Information Technology and Systems, 1-4, Aug. 2010. Google Scholar
37. Gagnon, N., A. Petosa, and D. A. McNamara, "Research and development on phase-shifting surfaces (PSSS)," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 29-48, Apr. 2013. Google Scholar
38. Gagnon, N. and A. Petosa, "Using rotatable planar phase shifting surfaces to steer a high-gain beam," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3086-3092, Jun. 2013. Google Scholar
39. Gagnon, N., A. Petosa, and D. A. McNamara, "Thin microwave quasi-transparent phase-shifting surface (PSS)," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1193-1201, Apr. 2010. Google Scholar
40. Sievenpiper, D. F., Artificial Impedance Surfaces for Antennas, Ch. 15, 737-777, John Wiley & Sons, Ltd., 2008, [Online], Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/978047029-4154.ch15.
41. Colburn, J. S., A. Lai, D. F. Sievenpiper, A. Bekaryan, B. H. Fong, J. J. Ottusch, and P. Tulythan, "Adaptive artificial impedance surface conformal antennas," 2009 IEEE Antennas and Propagation Society International Symposium, 1-4, Jun. 2009. Google Scholar
42. Sievenpiper, D., J. Colburn, B. Fong, J. Ottusch, and J. Visher, "Holographic artificial impedance surfaces for conformal antennas," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 256-259, Jul. 2005. Google Scholar
43. De Kok, M., A. B. Smolders, and U. Johannsen, "A review of design and integration technologies for D-band antennas," IEEE Open Journal of Antennas and Propagation, Vol. 2, 746-758, 2021. Google Scholar
44. Ullah, M. A., R. Keshavarz, M. Abolhasan, J. Lipman, K. P. Esselle, and N. Shariati, "A review on antenna technologies for ambient RF energy harvesting and wireless power transfer: Designs, challenges and applications," IEEE Access, Vol. 10, 17231-17267, 2022. Google Scholar
45. Abdullah, S., G. Xiao, and R. E. Amaya, "A review on the history and current literature of metamaterials and its applications to antennas and radio frequency identification (RFID) devices," IEEE Journal of Radio Frequency Identification, Vol. 5, No. 4, 427-445, 2021. Google Scholar
46. Lu, G., J. Wang, Z. Xie, and J. T. W. Yeow, "Carbon-based THz microstrip antenna design: A review," IEEE Open Journal of Nanotechnology, Vol. 3, 15-23, 2022. Google Scholar
47. Chaloun, T., L. Boccia, E. Arnieri, M. Fischer, V. Valenta, N. J. G. Fonseca, and C. Waldschmidt, "Electronically steerable antennas for future heterogeneous communication networks: Review and perspectives," IEEE Journal of Microwaves, Vol. 2, No. 4, 545-581, 2022. Google Scholar
48. Ramahatla, K., M. Mosalaosi, A. Yahya, and B. Basutli, "Multiband reconfigurable antennas for 5G wireless and cubesat applications: A review," IEEE Access, Vol. 10, 40910-40931, 2022. Google Scholar