Vol. 98
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-02-16
Diffraction by a Semi-Infinite Parallel-Plate Waveguide with Five-Layer Material Loading: Rigorous Wiener-Hopf Analysis
By
Progress In Electromagnetics Research B, Vol. 98, 125-145, 2023
Abstract
In this paper, the Wiener-Hopf technique is used to analyze the plane wave diffraction rigorously by a semi-infinite parallel-plate waveguide with five-layer material loading for E polarization. Introducing the Fourier transform of the unknown scattered field and applying boundary conditions in the transform domain, the problem is formulated in terms of the simultaneous Wiener-Hopf equations satisfied by unknown spectral functions. The Wiener-Hopf equations are solved exactly via the factorization and decomposition procedures leading to exact and approximate solutions. Taking the Fourier inverse of the solution in the transform domain, the scattered field in the real space is explicitly derived. For the region inside the waveguide, the scattered field is expressed in terms of the waveguide TE modes, whereas the field outside the waveguide is evaluated asymptotically with the aid of the saddle point method leading to a far field expression. Numerical examples of the radar cross section (RCS) are presented for various physical parameters and farfield scattering characteristics of the waveguide are discussed in detail.
Citation
Kewen He, and Kazuya Kobayashi, "Diffraction by a Semi-Infinite Parallel-Plate Waveguide with Five-Layer Material Loading: Rigorous Wiener-Hopf Analysis," Progress In Electromagnetics Research B, Vol. 98, 125-145, 2023.
doi:10.2528/PIERB22112401
References

1. Knott, E. F., J. Shaeffer, and M. Tuley, Radar Cross Section, 2nd Ed., SciTech, Raleigh, 2004.
doi:10.1049/SBRA026E

2. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., Wiley, New York, 2012.

3. Stone, W. R., Ed., Radar Cross Sections of Complex Objects, IEEE Press, New York, 1990.

4. Bhattacharyya, A. K. and D. L. Sengupta, "Radar Cross Section Analysis and Control," Artech House, 1991.

5. Bernard, J. M. L., G. Pelosi, and P. Ya. Ufimtsev, "Special issue on radar cross section of complex objects," Ann. Telecommun., Vol. 50, 1995.

6. Michielssen, E., J. M. Sajer, S. Ranjithan, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Trans. Microwave. Theory Tech., Vol. 41, 1024-1031, 1993.
doi:10.1109/22.238519

7. Zhou, D., X. Huang, and Z. Du, "Analysis and design of multilayered broadband radar absorbing metamaterial using the 3-D printing technology-based method," IEEE Antennas Wireless Propag. Lett., Vol. 16, 133-136, 2017.
doi:10.1109/LAWP.2016.2560904

8. Toktas, A., D. Ustun, and M. Tekbas, "Multi-objective design of multilayer radar absorber using surrogate-based optimization," IEEE Trans. Microwave. Theory Techn., Vol. 67, 3318-3329, 2019.
doi:10.1109/TMTT.2019.2922600

9. Pathak, P. H. and R. J. Bukholder, "Electromagnetic Radiation, Scattering, and Diffraction," Wiley, 2021.

10. Lee, C. S. and S.-W. Lee, "RCS of a coated circular waveguide terminated by a perfect conductor," IEEE Trans. Antennas Propagat., Vol. 35, 391-398, 1987.
doi:10.1109/TAP.1987.1144114

11. Altintas, A., P. H. Pathak, and M. C. Liang, "A selective modal scheme for the analysis of EM coupling into or radiation from large open-ended waveguides," IEEE Trans. Antennas Propagat., Vol. 36, 84-96, 1988.
doi:10.1109/8.1077

12. Ling, H., R.-C. Chou, and S.-W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrary shaped cavity," IEEE Trans. Antennas Propagat., Vol. 37, 194-205, 1989.
doi:10.1109/8.18706

13. Pathak, P. H. and R. J. Burkholder, "Modal, ray, and beam techniques for analyzing the EM scattering by open-ended waveguide cavities," IEEE Trans. Antennas Propagat., Vol. 37, 635-647, 1989.
doi:10.1109/8.24192

14. Pathak, P. H. and R. J. Burkholder, "A reciprocity formulation for the EM scattering by an obstacle within a large open cavity," IEEE Trans. Microwave Theory Tech., Vol. 41, 702-707, 1993.
doi:10.1109/22.231668

15. Lee, R. and T.-T. Chia, "Analysis of electromagnetic scattering from a cavity with a complex termination by means of a hybrid ray-FDTD method," IEEE Trans. Antennas Propagat., Vol. 41, 1560-1569, 1993.
doi:10.1109/8.267356

16. Ohnuki, S. and T. Hinata, "Radar cross section of an open-ended rectangular cylinder with an iris inside the cavity," IEICE Trans. Electron., Vol. E81-C, 1875-1880, 1998.

17. Kim, D. Y., H. Lim, J. H. Han, W. Y. Song, and N. H. Myung, "RCS reduction of open-ended circular waveguide cavity with corrugations using mode matching and scattering matrix analysis," Progress In Electromagnetics Research, Vol. 146, 57-69, 2014.
doi:10.2528/PIER14022801

18. Xiang, S., G. Xiao, and J. Mao, "A generalized transition matrix model for open-ended cavity with complex internal structures," IEEE Trans. Antennas Propagat., Vol. 64, 3920-3930, 2016.
doi:10.1109/TAP.2016.2583067

19. Zhou, Y., Y. Yan, J. Xie, H. Chen, G. Zhang, F. Li, L. Zhang, X. Wang, X. Weng, P. Zhou, et al. "Broadband RCS reduction for electrically-large open-ended cavity using random coding metasurfaces," Journal of Physics D: Applied Physics, Vol. 52, 315303, 2019.
doi:10.1088/1361-6463/ab1e2a

20. Serizawa, H. and K. Hongo, "Radiation from a flanged rectangular waveguide," IEEE Trans. Antennas Propagat., Vol. 53, 3953-3962, 2005.
doi:10.1109/TAP.2005.859748

21. Sato, R. and H. Shirai, "Electromagnetic plane wave scattering by a loaded trough on a ground plane," IEICE Trans. Electron., Vol. E77-C, 1983-1989, 1994.

22. Buyukaksoy, A., F. Birbir, and E. Erdogan, "Scattering characteristics of a rectangular groove in a reactive surface," IEEE Trans. Antennas and Propagat., Vol. 43, 1450-1458, 1995.
doi:10.1109/8.475936

23. Cetiner, B. A., A. Buyukaksoy, and F. Gunes, "Diffraction of electromagnetic waves by an openended parallel plate waveguide cavity with impedance walls," Progress In Electromagnetics Research, Vol. 26, 165-197, 2000.
doi:10.2528/PIER99062301

24. Noble, B., Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations, Pergamon, London, 1958.

25. Mittra, R. and S.-W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, New York, 1971.

26. Kobayashi, K., "Wiener-Hopf and modified residue calculus techniques," Analysis Methods for Electromagnetic Wave Problems, E. Yamashita (ed.), Chap. 8, Artech House, Boston, 1990.

27. Daniele, V. G. and G. Lombardi, Scattering and Diffraction by Wedges 1, The Wiener-Hopf Solution-theory, Wiley-ISTE, Hoboken, 2020.

28. Daniele, V. G. and G. Lombardi, Scattering and Diffraction by Wedges 2, The Wiener-Hopf Solution-advanced Applications, Wiley-ISTE, Hoboken, 2020.

29. Kobayashi, K. and A. Sawai, "Plane wave diffraction by an openended parallel plate waveguide cavity," Journal of Electromagnetic Waves and Applications, Vol. 6, 475-512, 1992.
doi:10.1163/156939392X01264

30. Kobayashi, K., S. Koshikawa, and A. Sawai, "Diffraction by a parallel-plate waveguide cavity with dielectric/ferrite loading: part I --- The case of E polarization," Progress In Electromagnetics Research, Vol. 8, 377-426, 1994.
doi:10.2528/PIER93031400

31. Koshikawa, S. and K. Kobayashi, "Diffraction by a parallel-plate waveguide cavity with dielectric/ferrite loading: part II --- The case of H polarization," Progress In Electromagnetics Research, Vol. 8, 427-458, 1994.
doi:10.2528/PIER93031401

32. Zheng, J. P. and K. Kobayashi, "Plane wave diffraction by a finite parallel-plate waveguide with four-layer material loading: part I --- The case of E polarization," Progress In Electromagnetics Research B, Vol. 6, 1-36, 2008.
doi:10.2528/PIERB08031219

33. Shang, E. H. and K. Kobayashi, "Plane wave diffraction by a finite parallel-plate waveguide with four-layer material loading: part II --- The case of H polarization," Progress In Electromagnetics Research B, Vol. 6, 267-294, 2008.
doi:10.2528/PIERB08031220

34. Koshikawa, S., D. Colak, A. Altintas, K. Kobayashi, and A. I. Nosich, "A comparative study of RCS predictions of canonical rectangular and circular cavities with double-layer material loading," IEICE Trans. Electron., Vol. E80-C, 1457-1466, 1997.

35. Koshikawa, S. and K. Kobayashi, "Diffraction by a terminated, semi-infinite parallel-plate waveguide with three-layer material loading," IEEE Trans. Antennas and Propagat., Vol. 45, 949-959, 1997.
doi:10.1109/8.585742

36. Koshikawa, S. and K. Kobayashi, "Diffraction by a terminated, semi-infinite parallel-plate waveguide with three-layer material loading: The case of H polarization," Electromagnetic Waves & Electronic Systems, Vol. 5, 13-23, 2000.

37. Shang, E. H. and K. Kobayashi, "Diffraction by a terminated, semi-infinite parallel-plate waveguide with four-layer material loading," Progress In Electromagnetics Research B, Vol. 12, 139-162, 2009.
doi:10.2528/PIERB08121701

38. Meixner, J., "The behavior of electromagnetic field at edges," IEEE Trans. Antennas and Propagat., Vol. 20, 442-446, 1972.
doi:10.1109/TAP.1972.1140243