1. Knott, E. F., J. Shaeffer, and M. Tuley, Radar Cross Section, 2nd Ed., SciTech, 2004.
doi:10.1049/SBRA026E
2. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., Wiley, 2012.
3. Stone, W. R., Ed., Radar Cross Sections of Complex Objects, IEEE Press, 1990.
4. Bhattacharyya, A. K. and D. L. Sengupta, "Radar Cross Section Analysis and Control," Artech House, 1991. Google Scholar
5. Bernard, J. M. L., G. Pelosi, and P. Ya. Ufimtsev, "Special issue on radar cross section of complex objects," Ann. Telecommun., Vol. 50, 1995. Google Scholar
6. Michielssen, E., J. M. Sajer, S. Ranjithan, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Trans. Microwave. Theory Tech., Vol. 41, 1024-1031, 1993.
doi:10.1109/22.238519 Google Scholar
7. Zhou, D., X. Huang, and Z. Du, "Analysis and design of multilayered broadband radar absorbing metamaterial using the 3-D printing technology-based method," IEEE Antennas Wireless Propag. Lett., Vol. 16, 133-136, 2017.
doi:10.1109/LAWP.2016.2560904 Google Scholar
8. Toktas, A., D. Ustun, and M. Tekbas, "Multi-objective design of multilayer radar absorber using surrogate-based optimization," IEEE Trans. Microwave. Theory Techn., Vol. 67, 3318-3329, 2019.
doi:10.1109/TMTT.2019.2922600 Google Scholar
9. Pathak, P. H. and R. J. Bukholder, "Electromagnetic Radiation, Scattering, and Diffraction," Wiley, 2021. Google Scholar
10. Lee, C. S. and S.-W. Lee, "RCS of a coated circular waveguide terminated by a perfect conductor," IEEE Trans. Antennas Propagat., Vol. 35, 391-398, 1987.
doi:10.1109/TAP.1987.1144114 Google Scholar
11. Altintas, A., P. H. Pathak, and M. C. Liang, "A selective modal scheme for the analysis of EM coupling into or radiation from large open-ended waveguides," IEEE Trans. Antennas Propagat., Vol. 36, 84-96, 1988.
doi:10.1109/8.1077 Google Scholar
12. Ling, H., R.-C. Chou, and S.-W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrary shaped cavity," IEEE Trans. Antennas Propagat., Vol. 37, 194-205, 1989.
doi:10.1109/8.18706 Google Scholar
13. Pathak, P. H. and R. J. Burkholder, "Modal, ray, and beam techniques for analyzing the EM scattering by open-ended waveguide cavities," IEEE Trans. Antennas Propagat., Vol. 37, 635-647, 1989.
doi:10.1109/8.24192 Google Scholar
14. Pathak, P. H. and R. J. Burkholder, "A reciprocity formulation for the EM scattering by an obstacle within a large open cavity," IEEE Trans. Microwave Theory Tech., Vol. 41, 702-707, 1993.
doi:10.1109/22.231668 Google Scholar
15. Lee, R. and T.-T. Chia, "Analysis of electromagnetic scattering from a cavity with a complex termination by means of a hybrid ray-FDTD method," IEEE Trans. Antennas Propagat., Vol. 41, 1560-1569, 1993.
doi:10.1109/8.267356 Google Scholar
16. Ohnuki, S. and T. Hinata, "Radar cross section of an open-ended rectangular cylinder with an iris inside the cavity," IEICE Trans. Electron., Vol. E81-C, 1875-1880, 1998. Google Scholar
17. Kim, D. Y., H. Lim, J. H. Han, W. Y. Song, and N. H. Myung, "RCS reduction of open-ended circular waveguide cavity with corrugations using mode matching and scattering matrix analysis," Progress In Electromagnetics Research, Vol. 146, 57-69, 2014.
doi:10.2528/PIER14022801 Google Scholar
18. Xiang, S., G. Xiao, and J. Mao, "A generalized transition matrix model for open-ended cavity with complex internal structures," IEEE Trans. Antennas Propagat., Vol. 64, 3920-3930, 2016.
doi:10.1109/TAP.2016.2583067 Google Scholar
19. Zhou, Y., Y. Yan, J. Xie, H. Chen, G. Zhang, F. Li, L. Zhang, X. Wang, X. Weng, P. Zhou, et al. "Broadband RCS reduction for electrically-large open-ended cavity using random coding metasurfaces," Journal of Physics D: Applied Physics, Vol. 52, 315303, 2019.
doi:10.1088/1361-6463/ab1e2a Google Scholar
20. Serizawa, H. and K. Hongo, "Radiation from a flanged rectangular waveguide," IEEE Trans. Antennas Propagat., Vol. 53, 3953-3962, 2005.
doi:10.1109/TAP.2005.859748 Google Scholar
21. Sato, R. and H. Shirai, "Electromagnetic plane wave scattering by a loaded trough on a ground plane," IEICE Trans. Electron., Vol. E77-C, 1983-1989, 1994. Google Scholar
22. Buyukaksoy, A., F. Birbir, and E. Erdogan, "Scattering characteristics of a rectangular groove in a reactive surface," IEEE Trans. Antennas and Propagat., Vol. 43, 1450-1458, 1995.
doi:10.1109/8.475936 Google Scholar
23. Cetiner, B. A., A. Buyukaksoy, and F. Gunes, "Diffraction of electromagnetic waves by an openended parallel plate waveguide cavity with impedance walls," Progress In Electromagnetics Research, Vol. 26, 165-197, 2000.
doi:10.2528/PIER99062301 Google Scholar
24. Noble, B., Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations, Pergamon, 1958.
25. Mittra, R. and S.-W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, 1971.
26. Kobayashi, K., "Wiener-Hopf and modified residue calculus techniques," Analysis Methods for Electromagnetic Wave Problems, E. Yamashita (ed.), Chap. 8, Artech House, Boston, 1990. Google Scholar
27. Daniele, V. G. and G. Lombardi, Scattering and Diffraction by Wedges 1, The Wiener-Hopf Solution-theory, Wiley-ISTE, 2020.
28. Daniele, V. G. and G. Lombardi, Scattering and Diffraction by Wedges 2, The Wiener-Hopf Solution-advanced Applications, Wiley-ISTE, 2020.
29. Kobayashi, K. and A. Sawai, "Plane wave diffraction by an openended parallel plate waveguide cavity," Journal of Electromagnetic Waves and Applications, Vol. 6, 475-512, 1992.
doi:10.1163/156939392X01264 Google Scholar
30. Kobayashi, K., S. Koshikawa, and A. Sawai, "Diffraction by a parallel-plate waveguide cavity with dielectric/ferrite loading: part I --- The case of E polarization," Progress In Electromagnetics Research, Vol. 8, 377-426, 1994.
doi:10.2528/PIER93031400 Google Scholar
31. Koshikawa, S. and K. Kobayashi, "Diffraction by a parallel-plate waveguide cavity with dielectric/ferrite loading: part II --- The case of H polarization," Progress In Electromagnetics Research, Vol. 8, 427-458, 1994.
doi:10.2528/PIER93031401 Google Scholar
32. Zheng, J. P. and K. Kobayashi, "Plane wave diffraction by a finite parallel-plate waveguide with four-layer material loading: part I --- The case of E polarization," Progress In Electromagnetics Research B, Vol. 6, 1-36, 2008.
doi:10.2528/PIERB08031219 Google Scholar
33. Shang, E. H. and K. Kobayashi, "Plane wave diffraction by a finite parallel-plate waveguide with four-layer material loading: part II --- The case of H polarization," Progress In Electromagnetics Research B, Vol. 6, 267-294, 2008.
doi:10.2528/PIERB08031220 Google Scholar
34. Koshikawa, S., D. Colak, A. Altintas, K. Kobayashi, and A. I. Nosich, "A comparative study of RCS predictions of canonical rectangular and circular cavities with double-layer material loading," IEICE Trans. Electron., Vol. E80-C, 1457-1466, 1997. Google Scholar
35. Koshikawa, S. and K. Kobayashi, "Diffraction by a terminated, semi-infinite parallel-plate waveguide with three-layer material loading," IEEE Trans. Antennas and Propagat., Vol. 45, 949-959, 1997.
doi:10.1109/8.585742 Google Scholar
36. Koshikawa, S. and K. Kobayashi, "Diffraction by a terminated, semi-infinite parallel-plate waveguide with three-layer material loading: The case of H polarization," Electromagnetic Waves & Electronic Systems, Vol. 5, 13-23, 2000. Google Scholar
37. Shang, E. H. and K. Kobayashi, "Diffraction by a terminated, semi-infinite parallel-plate waveguide with four-layer material loading," Progress In Electromagnetics Research B, Vol. 12, 139-162, 2009.
doi:10.2528/PIERB08121701 Google Scholar
38. Meixner, J., "The behavior of electromagnetic field at edges," IEEE Trans. Antennas and Propagat., Vol. 20, 442-446, 1972.
doi:10.1109/TAP.1972.1140243 Google Scholar