Vol. 99
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-03-14
Design of Waveguide Applicators Using a Quarter-Wave Transformer Prototype
By
Progress In Electromagnetics Research B, Vol. 99, 41-62, 2023
Abstract
In this paper, we propose a design methodology for waveguide applicators to maximize microwave power deposition into human tissues. The optimized applicators can be used in the experimental studies of the biological effects of exposure to electromagnetic radiation in the frequency range from 6 GHz to 100 GHz. The design methodology relies on the provision of reflectionless matching of a dissipative waveguide load, achieved by employing a matching network based on a quarter-wave transformer prototype. The prototype is synthesized by knowledge of the voltage standing wave ratio (VSWR) evaluated in the unmatched loaded waveguide. A key difference from the conventional synthesis procedure is that in our design approach, the characteristic impedance of the first transformer section is given, and we have to not only determine the characteristic impedances of the remaining sections, but also establish the output load. A solution of this synthesis problem and the process of converting the transformer prototype into a waveguide structure are described. The physical structure can be implemented according to provided sample models of waveguide WR137 applicators employing symmetric inductive or capacitive posts. The matched waveguide applicators are easy to manufacture, and according to the results from computational simulations, they demonstrate superior performance compared to the unmatched waveguides. Limitations of our designs (narrow bandwidth, dependence on the type of tissues encountered, limited potential for miniaturization) are discussed.
Citation
Mykola Zhuk, and Jonathan Paradis, "Design of Waveguide Applicators Using a Quarter-Wave Transformer Prototype," Progress In Electromagnetics Research B, Vol. 99, 41-62, 2023.
doi:10.2528/PIERB22121903
References

1. AbuHussain, M. and U. C. Hasar, "Design of X-bandpass waveguide Chebyshev filter based on CSRR metamaterial for telecommunication systems," Electronics (Basel), Vol. 9, No. 1, article 101, Jan. 2020.        Google Scholar

2. Asan, N. B., E. Hassan, J. Velander, S. R. M. Shah, D. Noreland, T. J. Blokhius, E. Wadbro, M. Berggren, T. Voigt, and R. August, "Characterization of the fat channel for intra-body communication at R-band frequencies," Sensors (Basel), Vol. 18, No. 9, article 2752, Sep. 2018.
doi:10.3390/s18092752        Google Scholar

3. Bertin, E., N. Crespi, T. Magedanz, and Eds., Shaping Future 6G Networks. Needs, Impacts, and Technologies, Wiley, 2022.

4. Cohn, S. B., "Design of simple broad-band wave-guide-to-coaxial-line junctions," Proc. IRE, Vol. 35, No. 9, 920-926, Sep. 1947.
doi:10.1109/JRPROC.1947.229940        Google Scholar

5. Dakhov, V. M., V. A. Katrich, and M. V. Nesterenko, "Compact radiator for microwave hyperthermia," Microwave & Telecommunication Technology (CriMiCo2008), 18th Int. Crimean Conf., 860-861, Sevastopol, Crimea, Ukraine, Sep. 08-12, 2008.        Google Scholar

6. Dicke, R. H., "General microwave circuit theorems," Principles of Microwave Circuits, 130-161, Montgomery, C. G., R. H. Dicke, and E. M. Purcell, Eds., McGraw-Hill, New York, NY, 1948.        Google Scholar

7. Dishal, M., "Alignment and adjustment of synchronously tuned multiple-resonant-circuit filters," Proc. IRE, Vol. 39, No. 11, 1148-1455, Nov. 1951.        Google Scholar

8. Eskelinen, H. and P. Eskelinen, Microwave Component Mechanics, Artech House, 2003.

9. Gajda, G. B., E. Lemay, and J. Paradis, "Model of steady-state temperature rise in multilayer tissues due to narrow-beam millimeter-wave radiofrequency field exposure," Health Phys., Vol. 117, No. 3, 254-266, Mar. 2019.
doi:10.1097/HP.0000000000001036        Google Scholar

10. Gupta, R. and S. Singh, "Development and analysis of a microwave direct contact water-loaded box-horn applicator for therapeutic heating of bio-medium," Progress In Electromagnetics Research, Vol. 62, 217-235, 2006.
doi:10.2528/PIER06031201        Google Scholar

11. International Commission on Non-Ionizing Radiation Protection (ICNIRP) "Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)," Health Phys., Vol. 118, No. 5, 483-524, May 2020.
doi:10.1097/HP.0000000000001210        Google Scholar

12. Kantor, G. and D. M. Witters, "The performance of a new 915-MHz direct contact applicator with reduced leakage," J. Microw. Power, Vol. 18, No. 2, 133-142, Jun. 1983.
doi:10.1080/16070658.1983.11689318        Google Scholar

13. Keshavarz, S., R. Keshavarz, and A. Abdipour, "Compact active duplexer based on CSRR and interdigital loaded microstrip coupled lines for LTE application," Progress In Electromagnetics Research C, Vol. 109, 27-37, 2021.
doi:10.2528/PIERC20112307        Google Scholar

14. Khan, S. R., S. K. Pavuluri, G. Cummins, and M. P. Y. Desmulliez, "Wireless power transfer techniques for implantable medical devices: A review," Sensors (Basel), Vol. 20, No. 12, article 3487.
doi:10.3390/s20123487        Google Scholar

15. Lakhtakia, A. and T. G. Mackay, "Meet the metamaterials," Opt. Photonics News, Vol. 18, No. 1, 32-39, Jan. 2007.
doi:10.1364/OPN.18.1.000032        Google Scholar

16. Lee, Y. and K. Hwang, "Skin thickness of Korean adults," Surg. Radiol. Anat., Vol. 24, No. 3-4, 183-189, Aug.-Sep. 2002.        Google Scholar

17. Lemay, E., G. B. Gajda, G. W. McGarr, M. Zhuk, and J. Paradis, "Analysis of ICNIRP 2020 basic restrictions for localized radiofrequency exposure in the frequency range above 6 GHz," Health Phys., Vol. 123, No. 3, 179-196, Sep. 2022.
doi:10.1097/HP.0000000000001581        Google Scholar

18. Levy, R., "Tables of element values for the distributed low-pass prototype filter," IEEE Trans. Microw. Theory Techn., Vol. 13, No. 5, 514-536, Sep. 1965.
doi:10.1109/TMTT.1965.1126048        Google Scholar

19. Levy, R., "A generalized design technique for practical distributed reciprocal ladder networks," IEEE Trans. Microw. Theory Techn., Vol. 21, No. 8, 519-526, Aug. 1973.
doi:10.1109/TMTT.1973.1128051        Google Scholar

20. Levy, R. and L. W. Hendrick, "Analysis and synthesis of in-line coaxial-to-waveguide adapters," 2002 IEEE MTT-S Int. Microw. Symp. Dig., 809-811, Seattle, WA, USA, Jun. 02-07, 2002.
doi:10.1109/MWSYM.2002.1011754        Google Scholar

21. Lind, L. F., "Synthesis of equally terminated low-pass lumped and distributed filters of even order," IEEE Trans. Microw. Theory Techn., Vol. 17, No. 1, 43-45, Jan. 1969.
doi:10.1109/TMTT.1969.1126878        Google Scholar

22. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, 1980.

23. Mehdizadeh, M., "Microwave/RF applicators and probes for material heating, sensing and plasma generation," A Design Guide, 2nd Edition, Elsevier, Oxford, UK, 2010.        Google Scholar

24. Ness, J. B., "A unified approach to the design, measurement, and tuning of coupled resonator filters," IEEE Trans. Microw. Theory Techn., Vol. 46, No. 4, 343-351, Apr. 1998.
doi:10.1109/22.664135        Google Scholar

25. Pokharel, R. K., A. Barakat, S. Alshhawy, K. Yoshitomi, and C. Sarris, "Wireless power transfer system rigid to tissue characteristics using metamaterial inspired geometry for biomedical implant applications," Sci. Rep., Vol. 11, article 5868, Mar. 12, 2021.        Google Scholar

26. Rappaport, C., "Synthesis of optimum microwave antenna applicators for use in treating deep localized tumors," Progress In Electromagnetics Research, Vol. 1, 175-240, 1989.        Google Scholar

27. Riblet, H. J., "General synthesis of quarter-wave impedance transformers," IRE Trans. Microw. Theory Techn., Vol. 5, No. 1, 36-43, Jan. 1957.
doi:10.1109/TMTT.1957.1125088        Google Scholar

28. Sasaki, K., K. Wake, and S. Watanabe, "Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz," Phys. Med. Biol., Vol. 59, No. 16, 4739-4747, Aug. 21, 2014.
doi:10.1088/0031-9155/59/16/4739        Google Scholar

29. Sasaki, K., M. Mizuno, K. Wake, and S. Watanabe, "Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz," Phys. Med. Biol., Vol. 62, No. 17, 6993-7010, Aug. 09, 2017.
doi:10.1088/1361-6560/aa81fc        Google Scholar

30. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 3rd Ed., Wiley, 2013.

31. Uher, J., J. Bornemann, and U. Rosenberg, Microwave Components for Antenna Feed Systems: Theory and CAD, Artech House, 1993.

32. Vrba, D., D. Rodrigues, J. Vrba, and P. R. Stauffer, "Metamaterial antenna arrays for improved uniformity of microwave hyperthermia treatments," Progress In Electromagnetics Research, Vol. 156, 1-12, 2016.
doi:10.2528/PIER16012702        Google Scholar

33. Wang, Q. and J. Bornemann, "Synthesis and design of direct-coupled rectangular waveguide filters with arbitrary inverter sequence," 2014 16th Int. Symp. Antenna Technol. Appl. Electromagnetics (ANTEM), 1-6, Victoria, BC, Canada, Jul. 13-16, 2014.        Google Scholar

34. Wang, Y., F. Qi, Z. Liu, P. Liu, W. Li, H. Wu, and W. Ning, "A wideband method to enhance the terahertz prenetration in human skin based on a 3D printed dielectric rod waveguide," IEEE Trans. Terahertz Sci. Technol., Vol. 9, No. 2, 155-164, Mar. 2019.
doi:10.1109/TTHZ.2019.2892562        Google Scholar

35. Weiβfloch, A., "Anwendung des Transformationssatzes uber verlustlose Vierpole auf die Hintereinanderschaltung von Vierpolen," Hochfrequenztechn. u. Elektroakust., Vol. 61, No. 1, 19-28, Jan. 1943.        Google Scholar

36. Weissfloch, A., Schaltungstheorie und Messtechnik des Dezimeter -und Zentimeter-Wellengebietes, Birkhauser, 1954.
doi:10.1007/978-3-0348-6858-7

37. Young, L., "The quarter-wave transformer prototype circuit," IRE Trans. Microw. Theory Techn., Vol. 8, No. 5, 483-489, Sep. 1960.
doi:10.1109/TMTT.1960.1124775        Google Scholar

38. Yu, M. and Y. Wang, "Synthesis and beyond," IEEE Microw. Mag., Vol. 12, No. 6, 63-76, Oct. 2011.        Google Scholar

39. Zoughi, R., Microwave Non-Destructive Testing and Evaluation, Kluwer, 2000.
doi:10.1007/978-94-015-1303-6