1. Arias, P., L. Adn-Arcay, B. Puerta-Catoira, A. Madrid, and J. Cudeiro, "Transcranial static magnetic field stimulation of M1 reduces corticospinal excitability without distorting sensorimotor integration in humans," Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, Vol. 10, No. 2, 340-342, 2017. Google Scholar
2. Huettel, S. A., A. W. Song, and G. McCarthy, Functional Magnetic Resonance Imaging, Vol. 1, Sinauer Associates Sunderland, 2004.
3. Atallah, K., S. Calverley, and D. Howe, "Design, analysis and realisation of a high-performance magnetic gear," IEE Proceedings-Electric Power Applications, Vol. 151, No. 2, 135-143, 2004.
doi:10.1049/ip-epa:20040224 Google Scholar
4. Molokanov, O., P. Dergachev, S. Osipkin, E. Kuznetsova, and P. Kurbatov, "A novel double-rotor planetary magnetic gear," IEEE Transactions on Magnetics, Vol. 54, No. 11, 1-5, 2018.
doi:10.1109/TMAG.2018.2837679 Google Scholar
5. Wu, W., H. Lovatt, and J. Dunlop, "Analysis and design optimisation of magnetic couplings using 3D nite element modelling," IEEE Transactions on Magnetics, Vol. 33, No. 5, 4083-4094, 1997.
doi:10.1109/20.619670 Google Scholar
6. Hu, J., J. Zou, F. Xu, Y. Li, and Yanchao Fu, "An improved PMSM rotor position sensor based on linear Hall sensors," IEEE Transactions on Magnetics, Vol. 48, No. 11, 3591-3594, 2012.
doi:10.1109/TMAG.2012.2202279 Google Scholar
7. Li, K., Y. Xu, Z, Zhao, and M. Q.-H. Meng, "External and internal sensor fusion based localization strategy for 6-dof pose estimation of a magnetic capsule robot," IEEE Robotics and Automation Letters, Vol. 7, No. 3, 6878-6885, 2022.
doi:10.1109/LRA.2022.3178473 Google Scholar
8. O'Connell, J. L., W. S. Robertson, and B. S. Cazzolato, "Optimization of the magnetic field produced by frustum permanent magnets for single magnet and planar halbach array congurations," IEEE Transactions on Magnetics, Vol. 57, No. 8, 1-9, 2021.
doi:10.1109/TMAG.2021.3085108 Google Scholar
9. Furlani, E. P., Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications, Academic Press, 2001.
10. Caciagli, A., R. J. Baars, A. P. Philipse, and B. W. M. Kuipers, "Exact expression for the magnetic field of a finite cylinder with arbitrary uniform magnetization," Journal of Magnetism and Magnetic Materials, Vol. 456, 423-432, 2018.
doi:10.1016/j.jmmm.2018.02.003 Google Scholar
11. O'Connell, J. L., W. S. Robertson, and B. S. Cazzolato, "Simplied equations for the magnetic field due to an arbitrarily-shaped polyhedral permanent magnet," Journal of Magnetism and Magnetic Materials, Vol. 510, 166894, 2020.
doi:10.1016/j.jmmm.2020.166894 Google Scholar
12. Nguyen, V. T. and T.-F. Lu, "Modelling of magnetic field distributions of elliptical cylinder permanent magnets with diametrical magnetization," Journal of Magnetism and Magnetic Materials, Vol. 491, 165569, 2019.
doi:10.1016/j.jmmm.2019.165569 Google Scholar
13. Hart, S., K. Hart, and J. P. Selvaggi, "Analytical expressions for the magnetic field from axially magnetized and conically shaped permanent magnets," IEEE Transactions on Magnetics, Vol. 56, No. 7, 1-9, 2020.
doi:10.1109/TMAG.2020.2992191 Google Scholar
14. Nguyen, V. T., "Magnetic field distribution of a conical permanent magnet with an application in magnetic resonance imaging," Journal of Magnetism and Magnetic Materials, Vol. 498, No. 5, 166136, 2020.
doi:10.1016/j.jmmm.2019.166136 Google Scholar
15. Nguyen, V., S. Bollmann, M. Bermingham, and M. S. Dargusch, "Efficient modelling of permanent magnet field distribution for deep learning applications," Journal of Magnetism and Magnetic Materials, Vol. 559, 169521, 2022.
doi:10.1016/j.jmmm.2022.169521 Google Scholar
16. Mateev, V. and I. Marinova, "Machine learning in magnetic field calculations," 2019 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF), 1-2, IEEE, 2019. Google Scholar
17. Milletari, F., N. Navab, and S.-A. Ahmadi, "V-net: Fully convolutional neural networks for volumetric medical image segmentation," 2016 Fourth International Conference on 3D Vision (3DV), 565-571, IEEE, 2016.
doi:10.1109/3DV.2016.79 Google Scholar
18. Kelleher, J. D., Deep Learning, MIT Press, 2019.
doi:10.7551/mitpress/11171.001.0001
19. Pan, R., T. Yang, J. Cao, K. Lu, and Z. Zhang, "Missing data imputation by K nearest neighbours based on grey relational structure and mutual information," Applied Intelligence, Vol. 43, No. 3, 614-632, 2015.
doi:10.1007/s10489-015-0666-x Google Scholar
20. Shanker, M., M. Y. Hu, and M. S. Hung, "Effect of data standardization on neural network training," Omega, Vol. 24, No. 4, 385-397, 1996.
doi:10.1016/0305-0483(96)00010-2 Google Scholar
21., https://www.tensor ow.org/tutorials/load data/tfrecord, (latest access on Sep. 23, 2022).
22., https://www.tensor ow.org/api docs/python/tf/keras/optimizers/Adam, (latest access Apr. 23, 2023).
23. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2015. Google Scholar
24. Weiss, K., T. M. Khoshgoftaar, and D. Wang, "A survey of transfer learning," Journal of Big Data, Vol. 3, No. 1, 1-40, 2016.
doi:10.1186/s40537-016-0043-6 Google Scholar
25., EMS 2020 User Guide, https://www.emworks.com/portal/download, (latest access on Sep. 30, 2022).
26. Chandra, S. S., M. B. Lorenzana, X. Liu, S. Liu, S. Bollmann, and S. Crozier, "Deep learning in magnetic resonance image reconstruction," Journal of Medical Imaging and Radiation Oncology, Vol. 65, No. 5, 564-577, 2021.
doi:10.1111/1754-9485.13276 Google Scholar
27. Karniadakis, G. E., I. G. Kevrekidis, L. Lu, P. Perdikaris, S.Wang, and L. Yang, "Physics-informed machine learning," Nature Reviews Physics, Vol. 3, No. 6, 422-440, 2021.
doi:10.1038/s42254-021-00314-5 Google Scholar