Vol. 15
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-06-19
Linear and Circular Array Optimization: a Study Using Particle Swarm Intelligence
By
Progress In Electromagnetics Research B, Vol. 15, 347-373, 2009
Abstract
Linear and circular arrays are optimized using the particle swarm optimization (PSO) method. Also, arrays of isotropic and cylindrical dipole elements are considered. The parameters of isotropic arrays are elements excitation amplitude, excitation phase and locations, while for dipole array the optimized parameters are elements excitation amplitude, excitation phase, location, and length. PSO is a high-performance stochastic evolutionary algorithm used to solve N-dimensional problems. The method of PSO is used to determine a set of parameters of antenna elements that provide the goal radiation pattern. The effectiveness of PSO for the design of antenna arrays is shown by means of numerical results. Comparison with other methods is made whenever possible. The results reveal that design of antenna arrays using the PSO method provides considerable enhancements compared with the uniform array and the synthesis obtained from other optimization techniques.
Citation
Majid M. Khodier, and Mohammad Al-Aqeel, "Linear and Circular Array Optimization: a Study Using Particle Swarm Intelligence," Progress In Electromagnetics Research B, Vol. 15, 347-373, 2009.
doi:10.2528/PIERB09033101
References

1. Schelkunoff, S., "A mathematical theory of linear arrays," Bell Systems Technology Journal, Vol. 22, No. 1, 80-107, 1943.

2. Keizer, W. P., "Fast low-sidelobe synthesis for large planar array antennas utilizing successive fast fourier transform of the array factor ," IEEE Trans. on Antennas and Propagat., Vol. 55, No. 3, 715-730, March 2007.
doi:10.1109/TAP.2007.891511

3. Woodward, P. M. and J. P. Lawson, "The theoretical precision with which an arbitrary radiation pattern may be obtained from a source of finite size," Proc. IEEE, Vol. 95, No. 1, 120-126, 1948.

4. Dolph, C., "A current distribution for broadside arrays which optimizes the relationship between beamwidth and side-lobe level," Institute of Radio Engineers (IRE), Vol. 34, No. 6, 335-348, 1946.

5. Balanis, C. A., Antenna Theory Analysis and Design, 2 Ed., John Wiley & Sons, 1997.

6. Moffett, A. L., "Array factors with non uniform spacing parameters," IRE Trans. on Antennas and Propagat., Vol. 10, 131-136, 1962.
doi:10.1109/TAP.1962.1137831

7. Ishimaru, A. and Y. S. Chen, "Thinning and broadbanding antenna arrays by unequal spacings," IEEE Trans. on Antennas and Propagat., Vol. 13, 34-42, 1965.
doi:10.1109/TAP.1965.1138378

8. Lo, Y. T. and S. W. Lee, "A study of space tapered arrays," IEEE Trans. on Antennas and Propagat., Vol. 14, No. 1, 22-30, January 1966.
doi:10.1109/TAP.1966.1138612

9. Ma, X. and B. K. Chang, "Least square method for optimum thinned antenna arrays," IEEE Antennas and Propagat. Society International Symposium, Vol. 4, No. 13, 2232-2235, July 1997.

10. Ng, B. P., "Designing array patterns with optimum inter-element spacings and optimum weights using a computer-aided approach ," Int. J. Electron., Vol. 73, No. 3, 653-664, September 1992.
doi:10.1080/00207219208925700

11. Ng, B. P., M. H. Er, and C. A. Kot, "Linear array aperture synthesis with minimum sidelobe level and null control," IEE Proc. --- Microwave Antennas Propagat., Vol. 141, No. 3, 2674-2679, June 1994.

12. Ng, B. P., "Array synthesis using a simple computer-aided approach," Electron. Lett., Vol. 26, No. 5, 337-339, March 1990.
doi:10.1049/el:19900221

13. Ismail, T. H. and M. M. Dawoud, "Null steering in phased arrays by controlling the element positions," IEEE Trans. on Antennas and Propagat., Vol. 39, No. 11, 1561-1566, November 1991.
doi:10.1109/8.102769

14. Er, M. H., S. L. Sim, and S. N. Koh, "Application of constrained optimization techniques to array pattern synthesis," Signal Process, Vol. 34, No. 3, 323-334, 1993.
doi:10.1016/0165-1684(93)90139-2

15. Steinberg, B. D., "Comparison between the peak sidelobe of random array and algorithmically designed aperiodic arrays," IEEE Trans. on Antennas and Propagat., Vol. 21, 366-369, 1973.
doi:10.1109/TAP.1973.1140493

16. Rahmat-samii, Y. and C. G. Christodoulou, "Special issue on synthesis and optimization techniques in electromagnetics and antenna system design," IEEE Trans. on Antennas and Propagat., Vol. 55, No. 3, 518-522, March 2007.
doi:10.1109/TAP.2007.891879

17. Shavit, R. and I. Taig, "Array pattern synthesis using neural networks with mutual coupling effect," IEE Proc. Microw. Antennas Propag., Vol. 152, No. 5, 354-358, October 2005.
doi:10.1049/ip-map:20045121

18. Guney, K. and N. A. Sarikaya, "Hybrid method based combining artifical neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular, and triangular microstrip antennas," IEEE Trans. on Antennas and Propagat., Vol. 55, No. 3, 659-668, March 2007.
doi:10.1109/TAP.2007.891566

19. Ng, B. P., "Array synthesis using a simple computer-aided approach," Electron. Lett., Vol. 26, No. 5, 337-339, March 1990.
doi:10.1049/el:19900221

20. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co. Inc., Boston, MA, 1989.

21. Tennant, A., M. M. Dawoud, and A. P. Anderson, "Array pattern nulling by element position perturbations using genetic algorithm ," IEEE Electronics Letters, Vol. 30, No. 3, 174-176, February 1994.
doi:10.1049/el:19940139

22. Ares, F., S. R. Rengarajan, E. Villanueva, E. Skochinski, and F. Moreno, "Application of genetic algorithms and simulated annealing technique in optimizing the aperture distributions of antenna array patterns," Electron. Lett., Vol. 32, No. 3, 148-149, February 1996.
doi:10.1049/el:19960157

23. Samii, Y. R. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, John Wiley and Sons, 1999.

24. Merino, A. R., R. L. Miranda, and J. L. Bonilla, "Optimization method based on genetic algorithms," Apeiron, Vol. 12, No. 4, 394-408, October 2005.

25. Marcano, J. D. and F. Duran, "Synthesis of antenna arrays using genetic algorithms," IEEE Antennas and Propagat. Magazine, Vol. 42, No. 3, 12-20, June 2000.
doi:10.1109/74.848944

26. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. on Antennas and Propagat., Vol. 42, No. 7, 993-999, July 1994.
doi:10.1109/8.299602

27. Shimizu, M., "Determining the excitation coefficients of an array using genetic algorithms," IEEE Antennas and Propagat. Society International Symposium, Vol. 1, No. 20-24, 530-533, June 1994.

28. Yan, K. K. and Y. Lu, "Sidelobe reduction in array-pattern synthesis using genetic algorithm," IEEE Trans. on Antennas and Propagat., Vol. 45, No. 7, 1117-1122, July 1997.

29. Jones, E. A. and W. A. Joines, "Design of Yagi-Uda antennas using genetic algorithms," IEEE Trans. on Antennas and Propagat., Vol. 45, No. 9, 1386-1392, September 1997.
doi:10.1109/8.623128

30. Donelli, M., S. Caorsi, F. Denatala, M. Pastorino, and A. Massa, "Linear antenna synthesis with a hybrid gentic algorithm," Progress In Electromagnetics Research, Vol. 49, 1-22, 2004.
doi:10.2528/PIER03121301

31. Mohanty, G. K., A. Chakrobarty, and S. Das, "Phase only and amplitude phase synthesis of dual pattern linear antenna arrays using floating point genetic algorithms," Progress In Electromagnetic Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301

32. Misra, I. S., R. S. Chakrobarty, and B. B. Mangaraj, "Design, analysis and optimization of V dipole and its three element Yagi-Uda array," Progress In Electromagnetic Research, Vol. 66, 137-156, 2006.
doi:10.2528/PIER06102604

33. Ferreira, J. A. and F. Ares, "Pattern synthesis of conformal arrays by the simulated annealing technique," Electron. Lett., Vol. 33, No. 14, 1187-1189, July 3, 1997.
doi:10.1049/el:19970838

34. Kirkpatrick, S., C. D. Gellatt, and M. P. Vecchi, "Optimization by simulated annealing," Science, Vol. 220, No. 4598, 671-680, 1983.
doi:10.1126/science.220.4598.671

35. Murino, V., A. Trucco, and C. S. Regazzoni, "Synthesis of unequally spaced arrays by simulated annealing," IEEE Trans. on Signal Processing, Vol. 44, No. 1, 119-123, January 1996.
doi:10.1109/78.482017

36. Ares, F., S. R. Rengarajan, E. Villanueva, E. Skochinski, and F. Moreno, "Application of genetic algorithms and simulated annealing technique in optimizing the aperture distributions of antenna array patterns," Electron. Lett., Vol. 32, No. 3, 148-149, February 1996.
doi:10.1049/el:19960157

37. Rocha-Alicano, C., D. Covarrubias-Rosales, C. Brizuela-Rodriguez, and M. Panduro-Mendoza, "Differential evolution algorithm applied to sidelobe level reduction on a planar array," AEU International Journal of Electronic and Communications, Vol. 61, No. 5, 286-290, 2007.
doi:10.1016/j.aeue.2006.05.008

38. Merad, L., F. Bendimerad, and S. Meriah, "Design of linear antenna arrays for side lobe reduction using the tabu search method," The International Arab Journal of Information Technology, Vol. 5, No. 3, 219-222, July 2008.

39. Kennedy, J. and R. C. Eberhart, "Particle swarm optimization," Proc. IEEE Int. Conf. Neural Networks, Vol. 1942-1948, Piscataway, NJ, 1995.

40. Eberhart, R. C. and Y. Shi, "Particle swarm optimization: Devel-opments, applications and resources," Proc. Congr. Evolutionary Computation, Vol. 1, 81-86, 2001.

41. Perez, J. R. and J. Basterrechea, "Comparison of different heuristic optimization methods for nearfield antenna measurements," IEEE Trans. on Antennas and Propagat., Vol. 55, No. 3, 549-555, March 2007.
doi:10.1109/TAP.2007.891508

42. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization," IEEE Trans. on Antennas Propagat., Vol. 53, No. 8, 2674-2679, August 2005.
doi:10.1109/TAP.2005.851762

43. Bataineh, M. H. and J. I. Ababneh, "Synthesis of a periodic linear phased antenna array using particle swarm optimization," Electromagnetics, Vol. 26, No. 7, 531-541, October 2006.
doi:10.1080/02726340600872948

44. Boeringer, D. W. and D. H. Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. on Antennas and Propagat., Vol. 52, No. 3, 771-779, March 2004.
doi:10.1109/TAP.2004.825102

45. Nanbo, J. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Trans. on Antennas and Propagat., Vol. 55, No. 3, 556-567, March 2007.
doi:10.1109/TAP.2007.891552

46. Dennis, G. and Y. Rahmat-Samii, "Particle swarm optimization for reconfigurable phase differentiated array design," Microwave and Optical Technology Letters, Vol. 38, No. 3, 168-175, August 5, 2003.

47. Baskar, S., A. Alphones, P. N. Suganthan, and J. J. Liang, "Design of Yagi-Uda antennas using comprehensive learning particle swarm optimization," IEE Proc. in Microw. Antennas Propagat., Vol. 152, No. 5, 340-346, October 2005.
doi:10.1049/ip-map:20045087

48. Huang, T. and A. S. Mohan, "A microparticle swarm optimizer for the reconstruction of microwave images," IEEE Trans. on Antennas and Propagat., Vol. 55, No. 3, 568-576, March 2007.
doi:10.1109/TAP.2007.891545

49. Mahmoud, K. R., M. E. El-Adawy, S. M. M. Ibrahem, R. Bansal, and S. H. Zainud-Deen, "Comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm," Progress In Electromagnetic Research, Vol. 72, 75-90, 2007.
doi:10.2528/PIER07030904

50. Baskar, S., A. Alphones, P. N. Suganthan, and J. J. Liang, "Design of Yagi-Uda antennas using comprehensive learning particle swarm optimization," IEEE Microwave Antenna Propagat., Vol. 152, No. 5, 340-346, October 2005.
doi:10.1049/ip-map:20045087

51. Chen, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, "Synthesis of circular antenna array using crossed particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1785-1795, 2006.
doi:10.1163/156939306779292273

52. Ciuprina, G., D. Ioan, and I. Munteanu, "Use of intelligent particle swarm optimization in electromagnetics," IEEE Trans. on Magnetics, Vol. 38, No. 2, 1037-1040, March 2002.
doi:10.1109/20.996266

53. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. on Antennas and Propagat., Vol. 52, No. 2, 397-407, February 2004.
doi:10.1109/TAP.2004.823969

54. Ababneh, J., M. Khodier, and N. Dib, "Synthesis of interdigital capacitors based on particle swarm optimization and artificial neural networks," International Journal of RF and Microwave Computer-aided Engineering, Vol. 16, No. 4, 322-330, February 2006.
doi:10.1002/mmce.20141

55. Xu, S. and Y. Rahmat-Samii, "Boundary conditions in particle swarm optimization revisited," IEEE Trans. on Antennas and Propagat., Vol. 55, No. 3, 760-765, March 2007.
doi:10.1109/TAP.2007.891562

56. Alander, J. T., L. A. Zinchenko, and S. N. Sorokin, "Analysis of fitness landscape properties for evolutionary antenna design," IEEE International Conference on Artificial Intelligent Systems, 363-368, 2002.

57. Lohn, J. D., W. F. Kraus, D. S. Linden, and S. P. Colornbano, "Evolutionary optimization of Yagi-Uda antennas," International Conference on Evolvable Systems, 236-243, Tokyo, October 3-5, 2001.

58. King, R. W. P., "Supergain antennas and the yagi and circular arrays," IEEE Trans. on Antennas and Propagat., Vol. 37, No. 2, 178-186, February 1989.
doi:10.1109/8.18704

59. Panduro, M. A., A. L. Mendez, G. Romero, and R. F. Dominguez, "Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms," Vehicular Technology Conference VTC, Vol. 6, 2696-2700, May 2006.

60. Shihab, M., Y. Najjar, N. Dib, and M. Khodier, "Design of non-uniform circular antenna arrays using particle swarm optimization," Journal of Electrical Engineering, Vol. 5, No. 4, 216-220, 2008.

61. Orfanidis, S. J., "Electromagnetic waves and antennas,", www.ece.rutgers.edu/orfanidi/ewa., 2003.