Search Results(13687)

2013-07-15
PIER C
Vol. 42, 13-28
Quasi-Elliptic Wideband Bandpass Filters Using Stubs Loaded Anti-Parallel Coupled-Line
Xin Xu and Wen Wu
This paper presents a new type of wideband bandpass filter (BPF) with quasi-elliptic frequency response by using proposed stubs loaded anti-parallel coupled-line. With different loads, the proposed stubs loaded anti-parallel coupled-line has different numbers of transmission zeros (TZs). These TZs are symmetrical along the designing frequency f0. By using a quarter-wavelength parallel coupled-line to connect two proposed stubs loaded anti-parallel coupled-line, three wideband BPFs centered at f0 = 1.575 GHz with quasi-elliptic frequency response are successfully designed. Good agreements between the simulations and measurements can be observed. The measured results also exhibits that the fabricated BPFs have the merits of low in-band insertion loss, good in-band return loss, sharp passband selectivity and high out-of-band rejection.
2013-07-15
PIER C
Vol. 42, 1-11
Characterization of Lossy SIW Resonators Based on Multilayer Perceptron Neural Networks on Graphics Processing Unit
Giandomenico Amendola , Giovanni Angiulli , Emilio Arnieri , Luigi Boccia and Domenico De Carlo
In recent years, Artificial Neural networks (ANNs) have been intensively employed to build smart model of microwave devices. In this paper a characterization of lossy SIW resonators by means of Multilayer Perceptron Neural Networks (MLPNNs) on Graphics Processing Unit (GPU), is presented. Once properly selected and trained, a MLPNN can evaluate the lossy SIW resonator's resonant frequency fr and the pertaining quality factor Q at a shorter time than the full-wave rigorous model. In this way, fast parametric models of SIWstructures to employ for the design and optimization of microwave devices, exploiting the computational power of GPUs, can be obtained.
2013-07-15
PIER C
Vol. 41, 255-265
Design of a Compact Tri-Band Power Divider with Unequal Outputs
Hai-Jin Zhou , Hua-Feng Wu , Guo-Zhong Lei and Yun-Zhu Ma
In this paper, we present a new design of a compact tri-band unequal power divider, which is composed of a circular-coupling power divider and a triple-band resonator. The unequal power dividing characteristic is realized by two circular shaped microstrip lines coupled through a circular shaped slot. The triple-band resonator, which comprises a conventional half-wavelength resonator, a short stub and an open stub, deals with the triple-bandpass performance. The proposed tri-band power divider with 1:1.6 output power ratios working at 3.4 GHz, 4.2 GHz, and 5.25 GHz is simulated and fabricated, and good agreements between the simulated and measured results are observed.
2013-07-15
PIER M
Vol. 32, 43-55
Single-Nanoweb Suspended Twin-Core Fiber for Optical Switching
Xiaowei Ma and Daru Chen
A novel suspended twin-core fiber (STCF) based on a single-nanoweb structure for optical switching is proposed. The singlenanoweb structure of the STCF is an ultrathin glass membrane (nanoweb) suspended in air and adhered to the inner ring of a glass fiber capillary, which substantially provides a built-in transducing mechanism to boost the pressure-induced index change in the fiber core region of the STCF. Two fiber cores locate symmetrically in the center of the nanoweb, resulting to the mode coupling for the guiding light in the STCF. Optical and mechanical properties of the proposed STCFs under different pressure force are numerically investigated. Optical switching based on the STCF is achieved by controlling the pressure force applied to the STCF. Our simulations show that optical switching from one core to the other in the STCF is realized based on a low switching force of only 8 N. The performances of the optical switching based on STCFs with different structure parameters are presented.
2013-07-15
PIER M
Vol. 32, 27-41
Magneto-Kinematical and Electro-Kinematical Fields
Vladimir Alexander Leus
The problem of the motion of a magnetic field due to the motion of a permanent magnet has been subject of scientific controversy for many decades. However, the similar question, pertaining to the motion of an electric field due to the motion of a permanent charge, has been neglected by the scientific community, tacitly admitting this specific purely kinematical phenomenon. Such an evidently skew position is under theoretical consideration on an experimental ground. It is shown a profound symmetry between electro-kinematics on the one hand and magneto-kinematics on the other, and also the radical dissimilarity of both from electrodynamics.
2013-07-15
PIER M
Vol. 32, 13-25
A Duality Between Metamaterials and Conventional Materials in Multilayered Anisotropic Planar Structures
Maryam Heidary , Ali Abdolali , Mohammad Mahdi Salary and Hossein Mirzaei
Consider a plane wave incident on a multilayered planar anisotropic structure composed of conventional materials and metamaterials and surround by two half-spaces. In this paper, we aim to prove three theorems which indicate a kind of duality in these structures. Assume an arbitrarily polarized plane wave obliquely incident on the structures. Theorem 1: Assume that an arbitrarily polarized plane wave is obliquely incident on the structure. Now each layer is filled with by dual media according to the interchanges DPS ↔ DNG and ENG ↔ MNG. Then, the reflection (R) and transmission (T) coefficients of the structure become the complex conjugates of their counterparts. Consequently, the reflected power and transmitted power from the structure are the same for the two dual cases of anisotropic media. Theorem 2: If the interchanges DPS ↔ DNG and ENG ↔ MNG are made in all the layers except in the half spaces on the two sides of the multilayer structure (which is more realizable), then the reflection coefficients become complex conjugates and the reflected power remains the same. Theorem 3: If the structure is backed by a perfect electric conductor and the media interchanges DPS ↔ DNG and ENG ↔ MNG are made in the layers, then the reflection coefficients of the two dual structures become complex conjugates of each other, and the reflected powers are equal. Independent of wave frequency, the number of layers, their thickness, and the type of polarization, these theorems hold true in case of any change in any of these conditions. In the last section, some examples are provided to verify the validity of the proposed theorems.
2013-07-15
PIER M
Vol. 32, 1-11
Multiresolution Time Domain Scheme Using Symplectic Integrators
Zheng Sun , Li-Hua Shi , Xiang Zhang and Yinghui Zhou
We incorporate high-order symplectic time integrators into multiresolution time domain (MRTD) schemes. The stability and numerical dispersion analysis are presented. The proposed scheme preserves the symplectic structure of Maxwell's equations and can be easily implemented in program codes. Compared to Runge-Kutta (RK)-MRTD, the suggested scheme is more accurate in long-term simulations and requires less computational resource.
2013-07-15
PIER
Vol. 141, 249-266
A Novel Synthesis Procedure for Ultra Wideband (UWB) Bandpass Filters
Sohail Khalid , Peng Wen Wong and Lee Yen Cheong
In this paper a novel synthesis procedure is presented to achieve optimum solution for UWB filter parameters. It is found that the narrowband approximation is not valid for any arbitrary powered rational type filtering function. For wider bandwidths frequency dependent terms have significant effects on the frequency response. Hence, extracted filtering function cannot be mapped to generalize Chebyshev polynomials. This paper will provide exact synthesis procedure for step impedance resonators (SIR's) type UWB bandpass filters. To validate the synthesis procedure prototypes are designed and fabricated. Simulated and measured results show good agreement with proposed theory.
2013-07-13
PIER
Vol. 141, 233-248
New Dielectric 1-d EBG Structure for the Design of Wideband Resonator Antennas
Naizhi Wang , Chong Zhang , Qingsheng Zeng , Naiqiang Wang and Jia-Dong Xu
In this paper, we propose a method to use 1-D dielectric slabs, instead of metallic Frequency Selective Surfaces (FSSs), to produce Partially Reflective Surfaces (PRSs) with positive reflection phase gradients. The structure is realized by a single kind of dielectric substrate. It is modeled as cascaded transmission lines and then analyzed by virtue of the Smith Chart from the perspective of impedance transformation. A PRS designed by this approach is then applied to the realization of a wideband EBG resonator antenna operating at Ku band which is fed by a slot-coupled patch antenna. The calculated results indicate that the antenna possesses a relative 3 dB gain bandwidth of 22%, from 14.1 GHz to 17.6 GHz, with a peak gain of 17 dBi. The impedance bandwidth for the reflection coefficient (S11) less than -10 dB, is from 14 GHz to 17.7 GHz, well covering the 3 dB gain bandwidth. A prototype has been fabricated and measured, and the experimental results well validate the simulation. The design method developed here is significantly effective, and can be easily adopted for antenna designs at other frequencies.
2013-07-13
PIER
Vol. 141, 219-231
Dual-Band Polarization Independent Metamaterial Absorber Based on Omega Resoanator and Octa-Star Strip Configuration
Furkan Dincer , Muharrem Karaaslan , Emin Unal and Cumali Sabah
Dual-band metamaterial absorber (MA) with polarization independency based on omega (Ω) resonator with gap and octa-star strip (OSS) configuration is presented both numerically and experimentally. The suggested MA has a simple configuration which introduces flexibility to adjust its metamaterial (MTM) properties and easily re-scale the structure for other frequencies. In addition, the dual-band character of the absorber provides additional degree of freedom to control the absorption band(s). Two maxima in the absorption are experimentally obtained around 99% at 4.0 GHz for the first band and 79% at 5.6 GHz for the second band which are in good agreement with the numerical simulations (99% and 84%, respectively). Besides, numerical simulations validate that the MA could achieve very high absorption at wide angles of incidence for both transverse electric (TE) and transverse magnetic (TM) waves. The proposed MA and its variations enable myriad potential applications in medical technologies, sensors, modulators, wireless communication, and so on.
2013-07-12
PIER
Vol. 141, 201-217
Signal Integrity and Electromagnetic Broadband Packaging Model Extraction of Full Differential Bandpass Filter on IPD with BGA Packaging
Sung-Mao Wu , Ren-Fang Hsu and Po Hui Yu
Since the system-level package was proposed, the electronics industry has increasingly attached importance to both directly relevant and related issues, and the scope of system-level package use has increased. Creating more complex system-level package structures, thereby leading to the design of overall electrical effects, requires more electromagnetic simulation resources, and therefore a great deal of time in the design process. The main purpose of this paper is to analyze the effects of system-level packaging, and to establish systems-in-package in accordance with electrical specifications. Using a segmented approach, this paper also builds an overall model for designers to predict electrical characteristics, thus shortening the product development schedule. In this paper, the transmission effects of a substrate are analyzed by changing the length of the substrate transmission line, with or without a thermal ground ball and ground ring. Previously established package IP are cascaded to establish the model of the package substrate, which verifies the feasibility of the package IP. We then analyze the characteristics of the interference between chips and package using an integrated passive device, and propose a complete package equivalent circuit model.
2013-07-12
PIER
Vol. 141, 185-200
Artifact Removal Algorithms for Microwave Imaging of the Breast
Muhammad Adnan Elahi , Martin Glavin , Edward Jones and Martin O'Halloran
One of the most promising alternative imaging modalities for breast cancer detection involved the use of microwave radar systems. A critical component of any radar-based imaging system for breast cancer detection is the early-stage artifact removal algorithm. Many existing artifact removal algorithms are based on simplifying assumptions about the degree of commonality in the artifact across all channels. However, several real-world clinical scenarios could result in greater variation in the early-stage artifact, making the artifact removal process much more difficult. In this study, a range of existing artifact removal algorithms, coupled with algorithms adapted from Ground Penetrating Radar applications, are compared across a range of appropriate performance metrics.
2013-07-12
PIER
Vol. 141, 161-183
Dual-Band Implantable Antennas for Medical Telemetry: A Fast Design Methodology and Validation for Intra-Cranial Pressure Monitoring
Asimina Kiourti , Konstantinos A. Psathas , Jorge R. Costa , Carlos A. Fernandes and Konstantina Nikita
In this study, we suggest and experimentally validate a methodology for fast and optimized design of dual-band implantable antennas for medical telemetry (MICS, 402-405 MHz, and ISM, 2400-2480 MHz). The methodology aims to adjust the design of a parametric dual-band antenna model towards optimally satisfying the requirements imposed by the antenna-fabrication procedure and medical application in hand. Design is performed in a systematic, fast, and accurate way. To demonstrate its effectiveness, the proposed methodology is applied to optimize the parametric antenna model for intra-cranial pressure (ICP) monitoring given a specific antenna-fabrication procedure. For validation purposes, a prototype of the optimized antenna is fabricated and experimentally tested. The proposed antenna is further evaluated within a 13-tissue anatomical head model in terms of resonance, radiation, and safety performance for ICP monitoring. Extensive parametric studies of the optimized antenna are, finally, performed. Feasibility of the proposed parametric antenna model to be optimally re-adjusted for various scenarios is demonstrated, and generic guidelines are provided for implantable antenna design. Dual-band operation is targeted to ensure energy autonomy for the implant. Finite Element (FE) and Finite Difference Time Domain (FDTD) simulations are carried out in homogeneous rectangular and anatomical head tissue models, respectively.
2013-07-12
PIER
Vol. 141, 149-160
An Alternative Model for Wave Propagation in Anisotropic Impedance-Matched Metamaterials
Consuelo Bellver-Cebreros and Marcelo Rodriguez-Danta
The propagation of light in an anisotropic impedance-matched metamaterial is studied in the frame of geometrical optics. We prove that directions of fields D, B and v (ray velocity) are a triad of conjugate directions with respect to the inverse relative dielectric permittivity tensor and constitutes a local basis, whose reciprocal one is formed by directions of E, H fields and wave-vector k. Consequently, both dual bases are intrinsically related to the physical properties of medium. We have identified these bases with direct and reciprocal bases of a curvilinear coordinates system, showing that physics defines geometry. This identification provides a powerful tool to solve two kinds of problems (direct and inverse ones) that currently arise: In direct problems, medium properties are given and it suffices to know ε = μ tensor at every point, to obtain the wave structure. In inverse problems, medium properties must be found for the rays to propagate along prescribed trajectories. The procedure is applied to an illustrating example.
2013-07-12
PIER
Vol. 141, 135-148
Application of the "Equivalent Cable Bundle Method" for Modeling Crosstalk of Complex Cable Bundles Within Uniform Structure with Arbitrary Cross-Section
Liang Liang Liu , Zhuo Li , Jian Yan and Chang Qing Gu
In this paper, the equivalent cable bundle method (ECBM), an efficient simplified modeling method of the complex cable bundles, is modified for crosstalk prediction of complex cable bundles within uniform structure with arbitrary cross section. The foremost attributes of the modified method are a) the cable bundle within uniform structure with arbitrary cross section can be mapped to equivalent cable bundle above an infinite perfect electric conductor ground plane during the equivalence procedure, b) the culprit and victim conductors are divided into two groups separately during the grouping process, denoted as the culprit group and victim one, which do not participate in the equivalence procedure compared with the original ECBM for crosstalk problem, c) an effective eight-phase procedure is established to define the electrical and geometrical characteristics of the reduced cable bundle model. Numerical simulations performed on a selected cable bundle surrounded by a rectangular cavity illustrate the efficiency and the advantages of the method. This method is considered as a key step for the ECBM to find wide applications in real systems.
2013-07-12
PIER
Vol. 141, 117-133
In-Situ Large Area Fabrication of Metamaterials on Arbitrary Substrates Using Paint Process
Pramod Singh , Christopher Mutzel , Samuel MacNaughton and Sameer Sonkusale
This paper proposes a novel method to make large area metamaterials on arbitrary planar hard or flexible substrates, in-situ. The method is based on painting the desired substrate with metallic and dielectric paints through a patterned stencil mask. We demonstrate this painting approach to fabricate ultra-thin perfect electromagnetic absorbers based on metamaterials at X-band frequencies (8-12 GHz) with paper based stencils, silver ink and latex paint. Measurement results on absorber samples made with this process shows absorption of 95%-99%, in close agreement with simulation results. The proposed painting approach is a simple low cost additive manufacturing process that can be used to realize metamaterial based frequency selective surfaces and filters, radar absorbers, camouflage screens, electromagnetic sensors and EMI protection devices.
2013-07-12
PIER
Vol. 141, 99-116
Direction Finding for Bistatic MIMO Radar Using EM Maximum Likelihood Algorithm
Hao Wen Chen , Degui Yang , Hong-Qiang Wang , Xiang Li and Zhaowen Zhuang
In this paper, we investigate an expectation-maximization (EM) maximum likelihood (ML) algorithm of direction finding (DF) for bistatic multiple-input multiple-output (MIMO) radar, where it is shown that the DF problem can be described as a special case of ML estimation with incomplete data. First, we introduce the signal and the noise models, and derive the ML estimations of the direction parameters. Considering the computational complexity, we make use of the EM algorithm to compute the ML algorithm, referred to EM ML algorithm, which can be applied to the arbitrary antenna geometry and realize the auto-pairing between direction-of-departures (DODs) and direction-of-arrivals (DOAs). Then the initialization is considered. In addition, both the convergence and the Cramer-Rao bound (CRB) analysis are derived. Finally, simulation results demonstrate the potential and asymptotic efficiency of this approach for MIMO radar systems.
2013-07-12
PIER
Vol. 141, 79-98
Fluctuating Target Detection in Low-Grazing Angle with MIMO Radar
Jincan Ding , Hao Wen Chen , Xiang Li and Zhaowen Zhuang
This paper focuses on the fluctuating target detection in low-grazing angle using Multiple-input Multiple-output (MIMO) radar systems with widely separated antennas, where the multipath effects are very abundant. The performance of detection can be improved via utilizing the multipath echoes, which is equivalent to improve the signal-to-noise ratio (SNR) by using multipath echoes. First, the reflection coefficient considering the curved earth effect is derived. Then, the general signal model for MIMO radar is introduced for fluctuating target in low-grazing angle. Using the Neyman-Pearson sense, the detectors of fluctuating targets, i.e., Swerling 1-4, with multipath are analyzed. Finally, the simulation results show that the performance can be enhanced markedly when the multipath effects are considered.
2013-07-11
PIER B
Vol. 53, 107-125
One-Dimensional Photonic Crystal Selective Filters Design Using Simulated Annealing Optimization Technique
Hadjira Abri Badaoui and Mehadji Abri
During the last decade, selective photonic crystal filters have received much research interest in the fields of nanotechnology and optical interconnection network. The main focus of this paper consists of an analysis and a synthesis of one-dimensional photonic crystal selective filters. The optimization is performed by employing the simulated annealing algorithm. The filters synthesis is obtained by acting on the Bragg grating layer widths. Simulated annealing is applied to solve the PhC-1D filters synthesis problem in order to reduce the quadratic error and to obtain a desired transmission according to a Gaussian function defined in advance by the user. Starting from the Maxwell's equations for dielectric nonmagnetic structure, we show the derivation of the Helmholtz equation and find its solution for 1D layered structure. In addition, the boundary conditions and equation transformation to set of linear equations which are solved using Cramer‟s method are described thoroughly. This mathematical technique is then applied for computation of the transmission spectra of 1D perfectly periodic structure and structures with different defects. These results can be easily applied for design of selective filters.
2013-07-11
PIER B
Vol. 53, 89-106
Design of Linearity Improved Asymmetrical GaN Doherty Power Amplifier Using Composite Right/Left-Handed Transmission Lines
Yunxuan Feng , Yuan'an Liu , Cuiping Yu , Shulan Li , Jiuchao Li and Xuan Zheng
A highly efficient asymmetrical GaN Doherty power amplifier using traditionalλ/4 transmission line and an asymmetrical GaN Doherty power amplifier(DPA) using composite right/left-handed transmission lines(CRLH-TL) for linearity improvement are presented in this paper.The CRLH-TL is designed to suppress the second harmonic of the output of the carrier amplifier. This DPA using CRLH-TL is designed for 3.5 GHz LTE-Advanced Application with 100 MHz bandwidth and 37 dBm average output power, the carrier and peaking amplifiers are fabricated with the same 30 W GaN HEMT and unevenly driven in purpose of maintaining high efficiency at back-off power (BOP) region. At 9-dB and 6-dB BOP, the DE achieves 30% and 40.1%, respectively, and the adjacent channel power ratio(ACPR) are less than-37.1 dBc for 40 MHz 16 QAM signal at 37 dBm. In addition, the further linearization of the DPA is realized by using digital pre-distortion(DPD), the ACPRs are improved to-49.6 dBc for 40 MHz 16 QAM signal.The measured results show linearity improvement compared with the traditional DPA.