1. Sanz-Serna, J. M. and M. P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, London, UK, 1994.
2. Hirono, T., W. Lui, S. Seki, and Y. Yoshikuni, "A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator," IEEE Trans. on Microw. Theory and Tech., Vol. 49, 1640-1648, 2001.
doi:10.1109/22.942578 Google Scholar
3. Sha, W., Z. Huang, M. Chen, and X. Wu, "Survey on symplectic finite-difference time-domain scheme for Maxwell's equation," IEEE Trans. on Antennas and Propag., Vol. 56, No. 2, 493-500, 2008.
doi:10.1109/TAP.2007.915444 Google Scholar
4. Sha, W., Z. Huang, X. Wu, and M. Chen, "Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation," J. Comput. Phys., Vol. 225, 33-50, 2007.
doi:10.1016/j.jcp.2006.11.027 Google Scholar
5. Sha, W., X. Wu, Z. Huang, and M. Chen, "Waveguide simulation using the high-order symplectic finite-difference time-domain scheme," Progress In Electromagnetics Research B, Vol. 13, 237-256, 2009.
doi:10.2528/PIERB09012302 Google Scholar
6. Kusaf, M., A. Y. Oztoprak, and D. S. Daoud, "Optimized exponential operator coefficients for symplectic FDTD method," IEEE Microw. Wireless Compon. Lett.,, Vol. 15, No. 2, 86-88, 2005.
doi:10.1109/LMWC.2004.842827 Google Scholar
7. Gradoni, G., V. Mariani Primiani, and F. Moglie, "Reverberation chamber as a multivariate process: FDTD evaluation of correlation matrix and independent positions," Progress In Electromagnetics Research, Vol. 133, 217-234, 2013. Google Scholar
8. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011. Google Scholar
9. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Researc, Vol. 120, 263-292, 2011. Google Scholar
10. Krumpholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. on Microwave Theory and Tech., Vol. 44, No. 4, 555-571, 1996.
doi:10.1109/22.491023 Google Scholar
11. Liu, Y., Y.-W. Chen, P. Zhang, and X. Xu, "Implementation and application of the spherical MRTD algorithm," Progress In Electromagnetics Research, Vol. 139, 577-597, 2013. Google Scholar
12. Sarris, C. D., "New concepts for the multiresolution time domain (MRTD) analysis of microwave structures," Proc. 34th Eur. Microw. Conf., Vol. 2, 881-884, London, UK, 2004.. Google Scholar
13. Cao, Q., R. Kanapady, and F. Reitich, "High-order Runge-Kutta multiresolution time-domain methods for computational electromagnetics," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 8, 3316-3326, 2006.
doi:10.1109/TMTT.2006.879130 Google Scholar
14. Chen, X. and Q. Cao, "Analysis of characreristics of two-dimensional Runge-Kutta multiresolution time-domain scheme," Progress In Electromagnetics Research M, Vol. 13, 217-227, 2010. Google Scholar
15. Fujii, M. and W. J. R. Hoefer, "Dispersion of time-domain wavelet-Galerkin method based on Daubechies compactly supported scaling functions with three and four vanishing moments," IEEE Microwave Guided Wave Lett., Vol. 10, No. 4, 125-127, 2000.
doi:10.1109/75.846920 Google Scholar