Vol. 32
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-07-15
Multiresolution Time Domain Scheme Using Symplectic Integrators
By
Progress In Electromagnetics Research M, Vol. 32, 1-11, 2013
Abstract
We incorporate high-order symplectic time integrators into multiresolution time domain (MRTD) schemes. The stability and numerical dispersion analysis are presented. The proposed scheme preserves the symplectic structure of Maxwell's equations and can be easily implemented in program codes. Compared to Runge-Kutta (RK)-MRTD, the suggested scheme is more accurate in long-term simulations and requires less computational resource.
Citation
Zheng Sun, Li-Hua Shi, Xiang Zhang, and Yinghui Zhou, "Multiresolution Time Domain Scheme Using Symplectic Integrators," Progress In Electromagnetics Research M, Vol. 32, 1-11, 2013.
doi:10.2528/PIERM13050708
References

1. Sanz-Serna, J. M. and M. P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, London, UK, 1994.

2. Hirono, T., W. Lui, S. Seki, and Y. Yoshikuni, "A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator," IEEE Trans. on Microw. Theory and Tech., Vol. 49, 1640-1648, 2001.
doi:10.1109/22.942578

3. Sha, W., Z. Huang, M. Chen, and X. Wu, "Survey on symplectic finite-difference time-domain scheme for Maxwell's equation," IEEE Trans. on Antennas and Propag., Vol. 56, No. 2, 493-500, 2008.
doi:10.1109/TAP.2007.915444

4. Sha, W., Z. Huang, X. Wu, and M. Chen, "Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation," J. Comput. Phys., Vol. 225, 33-50, 2007.
doi:10.1016/j.jcp.2006.11.027

5. Sha, W., X. Wu, Z. Huang, and M. Chen, "Waveguide simulation using the high-order symplectic finite-difference time-domain scheme," Progress In Electromagnetics Research B, Vol. 13, 237-256, 2009.
doi:10.2528/PIERB09012302

6. Kusaf, M., A. Y. Oztoprak, and D. S. Daoud, "Optimized exponential operator coefficients for symplectic FDTD method," IEEE Microw. Wireless Compon. Lett.,, Vol. 15, No. 2, 86-88, 2005.
doi:10.1109/LMWC.2004.842827

7. Gradoni, G., V. Mariani Primiani, and F. Moglie, "Reverberation chamber as a multivariate process: FDTD evaluation of correlation matrix and independent positions," Progress In Electromagnetics Research, Vol. 133, 217-234, 2013.

8. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011.

9. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Researc, Vol. 120, 263-292, 2011.

10. Krumpholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. on Microwave Theory and Tech., Vol. 44, No. 4, 555-571, 1996.
doi:10.1109/22.491023

11. Liu, Y., Y.-W. Chen, P. Zhang, and X. Xu, "Implementation and application of the spherical MRTD algorithm," Progress In Electromagnetics Research, Vol. 139, 577-597, 2013.

12. Sarris, C. D., "New concepts for the multiresolution time domain (MRTD) analysis of microwave structures," Proc. 34th Eur. Microw. Conf., Vol. 2, 881-884, London, UK, 2004..

13. Cao, Q., R. Kanapady, and F. Reitich, "High-order Runge-Kutta multiresolution time-domain methods for computational electromagnetics," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 8, 3316-3326, 2006.
doi:10.1109/TMTT.2006.879130

14. Chen, X. and Q. Cao, "Analysis of characreristics of two-dimensional Runge-Kutta multiresolution time-domain scheme," Progress In Electromagnetics Research M, Vol. 13, 217-227, 2010.

15. Fujii, M. and W. J. R. Hoefer, "Dispersion of time-domain wavelet-Galerkin method based on Daubechies compactly supported scaling functions with three and four vanishing moments," IEEE Microwave Guided Wave Lett., Vol. 10, No. 4, 125-127, 2000.
doi:10.1109/75.846920