1. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603 Google Scholar
2. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28 Google Scholar
3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
4. Chen, H.-T., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 144, 597-600, 2006.
doi:10.1038/nature05343 Google Scholar
5. Shrekenhamer, D., S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, "High speed terahertz modulation from metamaterials with embedded high electron mobility transistors," Optics Express, Vol. 19, 9968-9975, 2011.
doi:10.1364/OE.19.009968 Google Scholar
6. Liu, X., S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selverasah, A. Totachawattana, R. D. Averitt, S. Sonkusale, and W. J. Padilla, "Metamaterial on parylene thin film substrates: Design, fabrication, and characterization at terahertz frequency," Applied Physics Letters, Vol. 96, 011906-1-3, 2010. Google Scholar
7. Takano, K., T. Kawabata, C. F. Hsieh, F. Miyamaru, M. W. Takeda, R. P. Pan, C. L. Pan, and M. Hangyo, "Terahertz metamaterials fabricated with the super-fine ink-jet printer," 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 656, London, 2009. Google Scholar
8. Sure, P., "The silver ink printed antenna," Global Identification, 70-72, 2005. Google Scholar
9. Nikitin, P. V., S. Lam, and K. V. S. Rao, "Low cost silver ink RFID tag antennas," IEEE Antennas and Propagation Society International Symposium, 353-365, 2005. Google Scholar
10. Tao, H., A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, "Terahertz metamaterials on free-standing highly-flexible polyimide substrates," J. Phys. D: Appl. Phys., Vol. 41, 232004-1-5, 2008. Google Scholar
11. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402-1-4, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
12. Singh, P. K., K. A. Korolev, M. N. Afsar, and S. Sonkusale, "Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate," Appl. Phys. Lett., Vol. 99, 264101-1-4, 2011. Google Scholar
13. Grant, J., Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Optics Letters, Vol. 36, 1524-1526, 2011.
doi:10.1364/OL.36.001524 Google Scholar
14. Alici, K. B., A. B. Turhan, C. M. Soukoulis, and E. Ozbay, "Optically thin composite resonant absorber at the near-infrared band: A polarization independent and spectrally broadband configuration," Optics Express, Vol. 19, 14260-14267, 2011.
doi:10.1364/OE.19.014260 Google Scholar
15. Yu, F., H.Wang, and S. Zou, "Efficient and tunable light trapping thin films," J. Phys. Chem. C, Vol. 114, 2066-2069, 2010.
doi:10.1021/jp909974h Google Scholar
16. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broad-band polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Communications, Vol. 2, 1-7, 2011.
doi:10.1038/ncomms1528 Google Scholar
17. Otoshi, T. Y., R. J. Cirillo, and J. Sosnowski, "Measurements of complex dielectric constants of paints and primers for DSN antennas: Part I,", 1-7, NASA Jet Propulsion Laboratory, 1999. Google Scholar
18. Merilampi, S. L., T. Bjo, A. Bjorninen, L. Vuorimaki, P. Ruuskanen, and L. Sydanheimo, "The effect of conductive ink layer thickness on the functioning of printed UHF RFID antennas," Proceedings of the IEEE, Vol. 98, 1610-1619, 2010.
doi:10.1109/JPROC.2010.2050570 Google Scholar
19. Wen, Q.-Y., Y.-S. Xie, H.-W. Zhang, Q.-H. Yang, Y.-X. Li, and Y.-L. Liu, "Transmission line model and fields analysis of metamaterial absorber in the terahertz band," Optics Express, Vol. 17, 20256-20265, 2009.
doi:10.1364/OE.17.020256 Google Scholar
20. Costa, F., S. Genovesi, A. Monorchio, and G. Manara, "A circuit-based model for the interpretation of perfect metamaterial absorbers," IEEE Trans. on Microw. Theory and Techniques, Vol. 61, 1201-1209, 2013. Google Scholar
21. Motel, C., S. McNaughton, and S. Sonkusale, "Paint on metamaterial: Low cost fabrication of absorbers at X band frequencies," International Microwave Symposium, 1-3, Montreal, QC, Canada, 2012. Google Scholar
22. Simms, S. and V. Fusco, "Thin radar absorber using artificial magnetic ground plane," Electronics Letters, Vol. 4, 1311-1313, 2005.
doi:10.1049/el:20053236 Google Scholar
23. Micheli, D., R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, "Broadband electromagnetic absorbers using carbon nanostructure-based composites," IEEE Trans. Microw. Theory and Techniques, Vol. 59, 2633-2646, 2011.
doi:10.1109/TMTT.2011.2160198 Google Scholar
24. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110 Google Scholar
25. Folgueras, L. D. C., M. A. Alves, and M. C. Rezende, "Development, characterization and optimization of dielectric radar absorbent materials as flexible sheets for use at X-band," IEEE MTT-S Microwave and Optoelectronics Conference, 2007. Google Scholar
26. Singh, D., A. Kumar, S. Menaa, and V. Agrawal, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012. Google Scholar
27. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar