Vol. 141
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-13
New Dielectric 1-D EBG Structure for the Design of Wideband Resonator Antennas
By
Progress In Electromagnetics Research, Vol. 141, 233-248, 2013
Abstract
In this paper, we propose a method to use 1-D dielectric slabs, instead of metallic Frequency Selective Surfaces (FSSs), to produce Partially Reflective Surfaces (PRSs) with positive reflection phase gradients. The structure is realized by a single kind of dielectric substrate. It is modeled as cascaded transmission lines and then analyzed by virtue of the Smith Chart from the perspective of impedance transformation. A PRS designed by this approach is then applied to the realization of a wideband EBG resonator antenna operating at Ku band which is fed by a slot-coupled patch antenna. The calculated results indicate that the antenna possesses a relative 3 dB gain bandwidth of 22%, from 14.1 GHz to 17.6 GHz, with a peak gain of 17 dBi. The impedance bandwidth for the reflection coefficient (S11) less than -10 dB, is from 14 GHz to 17.7 GHz, well covering the 3 dB gain bandwidth. A prototype has been fabricated and measured, and the experimental results well validate the simulation. The design method developed here is significantly effective, and can be easily adopted for antenna designs at other frequencies.
Citation
Naizhi Wang Chong Zhang Qingsheng Zeng Naiqiang Wang Jia-Dong Xu , "New Dielectric 1-D EBG Structure for the Design of Wideband Resonator Antennas," Progress In Electromagnetics Research, Vol. 141, 233-248, 2013.
doi:10.2528/PIER13061207
http://www.jpier.org/PIER/pier.php?paper=13061207
References

1. Moustafa, L. and B. Jecko, "EBG structure with wide defect band for broadband cavity antenna applications," IEEE Antennas and Wireless Propagation Letters,, Vol. 7, 693-696, 2008.
doi:10.1109/LAWP.2008.2009076

2. Leger, L., C. Serier, R. Chantalat, M. Thevenot, T. Monediere, and B. Jecko, "1D dielectric electromagnetic band gap (EBG) resonator antenna design," Annales des Telecommunications, Vol. 59, No. 34, 242-260, Mar.-Apr. 2004.

3. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702

4. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

5. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 209-215, Jan. 2005.
doi:10.1109/TAP.2004.840528

6. Vettikalladi, H., O. Lafond, and M. Himdi, "High-efficient and high-gain superstrate antenna for 60-GHz indoor communication," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1422-1425, 2009.
doi:10.1109/LAWP.2010.2040570

7. Rodes, E., M. Diblanc, E. Arnaud, T. Monediere, and B. Jecko, "Dual-band EBG resonator antenna using a single-layer FSS," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 368-371, 2007.
doi:10.1109/LAWP.2007.902808

8. Leger, L., T. Monediere, and B. Jecko, "Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 9, 573-575, Sep. 2005.
doi:10.1109/LMWC.2005.855373

9. Moustafa, L. and B. Jecko, "Design of a wideband highly directive EBG antenna using double-layer frequency selective surfaces and multifeed technique for application in the Ku-band," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 342-346, 2010.
doi:10.1109/LAWP.2010.2047630

10. Weily, A., K. P. Esselle, T. S. Bird, and B. C. Sanders, "Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth," IET Microwaves, Antennas & Propagation, Vol. 1, No. 1, 198-203, Feb. 2007.
doi:10.1049/iet-map:20050314

11. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimized partially reflective surfaces," IEE Proceedings on Microwaves, Antennas and Propagation, Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828

12. Moustafa, L. and B. Jecko, "Design and realization of a wide-band EBG antenna based on FSS and operating in the Ku-band," International Journal of Antennas and Propagation, Vol. 2010, 8 pages, Article ID 139069, 2010.

13. Feresidis, A. P. and J. C. Vardaxoglou, "A broadband high-gain resonant cavity antenna with single feed," First European Conference on Antennas and Propagation, EuCAP 2006, 1-5, Nov. 2006.

14. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 743-750, Feb. 2012.
doi:10.1109/TAP.2011.2173113

15. Trentini, G. V., "Partially reflecting sheet arrays," IEEE Transactions on Antennas and Propagation, Vol. 4, No. 4, 666-671, Oct. 1956.

16. Zeb, B. A., Y. Ge, K. P. Esselle, Z. Sun, and M. E. Tobar, "A simple dual-band electromagnetic band gap resonator antenna based on inverted reflection phase gradient," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4522-4529, Oct. 2012.
doi:10.1109/TAP.2012.2207331

17. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "High-gain low side lobe level fabry perot cavity antenna with feed patch array," Progress In Electromagnetics Research C, Vol. 28, 223-238, 2012.
doi:10.2528/PIERC12031503

18. Lee, Y., X. Lu, Y. Hao, S. Yang, J. Evans, and C. G. Parini, "Low-profile directive millimeter-wave antennas using free-formed three-dimensional (3-D) electromagnetic bandgap structures," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 2893-2903, Oct. 2009.